hydro turbines
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 36)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Nur Alom ◽  
Bikash Kumar Sarkar

Abstract Cross-flow hydro turbines (CFHTs) are generally used in micro hydraulic power plants due to their simplicity in design and fabrication, moderate efficiency, ease of maintenance. The CFHT can be used in low flow and low head conditions with an efficiency of around 90% at rated conditions. However, the efficiency of the CFHT can further be improved by changing its geometric parameters Hence, in the present investigation, 3D unsteady simulations are performed in order to locate the exit blade angle (β2) with the intention is to improve the efficiency of the turbine. In the proposed investigation, the multi-physics FVM solver ANSYS Fluent has been used with the help of the SST k-ω turbulence model to carry out the unsteady simulations. The 3D unsteady simulations are performed by varying the exit blade angle (β2) from 60° to 90° to improve its efficiency when the rotational speed is fixed with the number of blades being 20. From the unsteady simulations, the maximum efficiency of the CFHT is at the exit blade angle (β2) = 80°.


Author(s):  
Oblique Shrestha ◽  
Hari Prasad Neopane ◽  
BholaThapa ◽  
Young-Ho Lee ◽  
Aman Kapali

The removal of surface material due to repeated impacts of sediment is known as sediment erosion. This prominent phenomenon is found to exist on a run of the river types of hydro projects where the hydro turbines are exposed to sediment particles. It has drawn the attention of researchers, academic institutions, and hydropower developers to conduct research on this issue. Investigation of the problem at the site may require sophisticated equipment and sensors- set up for quantitative measurements. This process is time consuming and difficult as it is difficult to access the erosion location. Laboratory setup can be a solution to study and investigate erosion behaviour in well-controlled laboratory conditions. Among several erosion testing apparatuses, Rotating Disc Apparatus (RDA) has been used for the investigation of erosion as well as cavitation of hydro components, and to study the erosion resistivity of different materials. This device mainly consists of a rotating disc and an electric motor, which is used to rotate a disc-holding specimen. This paper evaluates the RDA for its applicability in simulating the flow on the surfaces of the components of the hydro turbines as that occurs in actual hydro power plants. The outcomes from the present study indicated that RDA produces promising erosion results and can simulate the wear conditions.


2021 ◽  
Vol 926 (1) ◽  
pp. 012013
Author(s):  
Y Setiawan ◽  
E S Wijianti ◽  
B S Wibowo ◽  
S Saparin ◽  
P Prayitnoadi

Abstract The Archimedes screw water turbine (AST) is a device that works mechanically to produce electrical energy with an energy source that comes from the flow of water. Archimedes screw hydro turbines operate at low head and flow rates and can generate electricity at micro levels. This type of turbine is very suitable for use in small waters such as irrigation and rivers. The research was conducted by building a prototype of a small-scale Archimedes screw hydro turbine with and without deflector. The purpose of this research is to compare the rotation produced by the two turbines and whether the installation of a deflector can improve turbine performance. The turbine is constructed with a screw length of 1 m, outer diameter is 30 cm, the number of blades 15, and each has a pitch distance is 13 cm. Turbine angle variations are 30°, 35°, and 40°. The results showed that the best rotor rotation was produced by the screw without deflector at an angle of 30°. This shows that the addition of a deflector reduces the resulting screw rotation.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Hamisi Ally Mrope ◽  
Yusufu Abeid Chande Jande ◽  
Thomas T. Kivevele

In recent years, advances in using computational fluid dynamics (CFD) software have greatly increased due to its great potential to save time in the design process compared to experimental testing for data acquisition. Additionally, in real-life tests, a limited number of quantities are measured at a time, while in a CFD analysis all desired quantities can be measured at once, and with a high resolution in space and time. This article reviews the advances made regarding CFD modeling and simulation for the design and optimization of crossflow hydro turbines (CFTs). The performance of these turbines depends on various parameters like the number of blades, tip speed ratio, type of airfoil, blade pitch, chord length and twist, and its distribution along the blade span. Technical aspects of the model design, which include boundary conditions, solution of the governing equations of the water flow through CFTS, and the assumptions made during the simulations are thoroughly described. From the review, a clear idea on the suitability of the accuracy CFD applications in the design and optimization of crossflow hydro turbines has been provided. Therefore, this gives an insight that CFD is a useful and effective tool suitable for the design and optimization of CFTs.


Author(s):  
Piyawat Sritram ◽  
Ratchaphon Suntivarakorn

This study aimed to enhance a micro hydroelectric generator system driven by free-flow vortex and to compare efficiency of Propeller and Crossflow turbines. Series of turbines in each type were designed and tested at water-flowrate of 0.02 m3/s. The turbine housing has 1 meter in diameter and 0.5-meter height with 2 meters outlet drain at the bottom. The best efficiency extracted from Crossflow turbines with the same height (0.3 meter) but different in diameter (0.4, 0.5, 0.6, and 0.7 meter) and numbers of blade (12, 18, 24, 30, and 23) was from an 18 blades turbine at 23.01% of efficiency. The best efficiency extracted from Propeller turbines with 5 blades was from a 0.4-meter-high turbine with a diameter of 0.7 meter at 13.92% of efficiency. There were 12 Propeller turbines designed in this study. They were different in height (0.2, 0.3, and 0.4 meter) and, in each height, 0.4, 0.5, 0.6, and 0.7 of diameter was applied. The result revealed that Cross Flow turbine had more efficiency to the system than Propeller turbine (9.09%) at the water-flowrate of 0.02 m3/s


2021 ◽  
Vol 868 (1) ◽  
pp. 012025
Author(s):  
A I Ismailov ◽  
N A Samatov ◽  
Sh K Bakhramov ◽  
B N Rayimdjanov ◽  
I F Sharipov

2021 ◽  
Vol 24 (3) ◽  
pp. 21-26
Author(s):  
Viktor H. Subotin ◽  
◽  
Oleksandr S. Burakov ◽  
Viktor M. Iefymenko ◽  
Andrii Yu. Starchenko ◽  
...  

The main objectives of the reconstruction are stated. Those are: increase of the service life of the hydro-turbines of Dnipro Cascade, enhancement of their efficiency, power, and environmental safety, extension of the power control range of the hydro-power plants, assurance of the reliability and improvement of the operating safety of their equipment and structures, meeting the environmental requirements, improvement of the quality of the generated electric power after control system rehabilitation. The article deals with and analyses the chronology of the creation of the optimal design for a vertical Kaplan hydro-unit oil piping taking into consideration the half a century operational experience and stages of hydro-turbine modernization for Dnipro-2 HPP. The experience in improvement of the hydro-unit and oil head system control design is generalized, from the unified solution to the creation of the all-new design. The methods of the oil system rod machining and preliminary control are amended. The temperature control of the automatic unit shutdown in case of heating of oil head bushes is introduced into the control system. The oil piping installation method is improved and step-by-step checking of the oil piping installation centering is introduced. As a result of implementation of a package of design and process engineering solutions, the optimal design of the oil piping of improved reliability was created. It decreased the unscheduled downtime of the units and cut expenses on their maintenance providing the cyclic recurrence recommended by the standards for the operation of the oil pressure device pumps and thus, decreased the electric power consumption for balance-of-plant needs. The objects of the implementation of the developed oil piping design are given.


2021 ◽  
pp. 1-27
Author(s):  
Alaa Hasan ◽  
Abdel Rahman Salem ◽  
Ahmad Abdelhadi ◽  
Saif Al Hamad ◽  
Mohammad Qandil ◽  
...  

Abstract This study investigates the optimum operating conditions and design configurations that can optimize the power reclaimed by small hydro turbines derived by the rising water-bubble current. The rising current is generated by the compressed air introduced by the diffusers at the bottom of aeration basins of Wastewater Treatment Plants (WWTPs). While optimizing the power production, the standard oxygen transfer efficiency (SOTE) is monitored since it is a significant parameter that cannot be sacrificed in the operation of WWTPs. Using one set of turbine blades, it was found out that the highest velocity is obtained in the upper half of the water column (70% - 80%). In contrast, the lowest velocities were obtained just above the air diffuser and at the water surface. Testing started with using a single turbine (ST) to determine the location of the optimum power reclaimed at each tested airflow (1.18, 1.42, 1.65, and 1.89 L/s). Then using double turbine (DT) and triple turbine (TT) to compare their performance to the ST’s maximum power increased power reclamation. The maximum percentage of increase in power reclamation for DT is 19.59%, while it is 20.24% in the case of TT. At a commonly used airflow in WWTPs (1.42 L/s), the optimum configurations of DTs and TTs were selected to investigate the effect of having the proposed setup on the SOTE. For membrane diffusers, DTs and TTs limited the dispersion of the air bubbles in the tank, therefore, reducing the SOTE (8.3% for DT and 3.7% for the TT). The ceramic and sharp-nub diffusers were also tested versus rubber membrane ones to determine the effect of using the ceramic and sharp-nub diffusers on the power reclamation and SOTE. Ceramic diffusers neither achieve higher power reclamation than the membrane nor increases the SOTE. In contrast, sharp-nub diffusers increase the SOTE for all configurations compared to membranes, but this came into account of power reclamation, where sharp-nub diffusers cause a DT and a TT to produce less power than ST does.


2021 ◽  
Vol 2 (3) ◽  
pp. 051-058
Author(s):  
Marwani Marwani ◽  
Muhammad Zahri Kadir ◽  
Ronny Egetha Putra

The flow of water in the pipeline for household needs is a source of energy that can generate electrical energy through Pico hydro turbines or small-power water turbines. The experiment has been conducted on a 10 Watt Pico hydro turbine mounted on a water pipe against changes in water flow discharge. The turbine performance analysis is conducted experimentally (actual) and theoretically (ideal). The analysis results showed the greater the discharge flow, the greater the power generated by the turbine. In tests with a maximum discharge of 8.9 l/min, the actual power of 1.121 Watts, the torque of 0.005 Nm with a rotation speed of 2146.8 rpm and efficiency of 12.59%; while the ideal power is based on Euler turbine equation of 4.2 Watts and torque of 0.016 Nm. So, the maximum turbine power that can be generated is only 26.67% ideal. Efficiency turbine decreases with increased discharge; in this test, the maximum efficiency was 24.89% at 5.8 L/min flow discharge.


Sign in / Sign up

Export Citation Format

Share Document