Computation of Turbulent Flow in Mixed Convection in a Cavity With a Localized Heat Source

1995 ◽  
Vol 117 (3) ◽  
pp. 649-658 ◽  
Author(s):  
E. Papanicolaou ◽  
Y. Jaluria

A numerical simulation of the turbulent transport from an isolated heat source in a square cavity with side openings is presented in this work. The openings allow an externally induced air stream at ambient temperature to flow through the cavity and, thus, mixed convection arises. Results for the turbulent regime are obtained, by employing a suitable, high-Reynolds-number from of the K–E turbulence model. A stream function-vorticity mathematical formulation is used, along with the kinetic energy and dissipation rate equations and an expression for the eddy viscosity. A time-marching scheme is employed, using the ADI method. The values of the Reynolds number Re, associated with the external flow, and the Grashof number Gr, based on the heat flux from the source, for which turbulent flow sets in are sought. Two typical values of the Reynolds number are chosen, Re = 1000 and Re = 2000, and turbulent results are obtained in the range Gr = 5 × 107 – 5 × 108. For both values of Re, the average Nusselt number over the surface of the source is found to vary with Gr in a fashion consistent with previous numerical and experimental results for closed cavities, while the effect of Re in the chosen range of values was small.

Author(s):  
Yan Jin

Abstract The turbulent flow in a compressor cascade is calculated by using a new simulation method, i.e., parameter extension simulation (PES). It is defined as the calculation of a turbulent flow with the help of a reference solution. A special large-eddy simulation (LES) method is developed to calculate the reference solution for PES. Then, the reference solution is extended to approximate the exact solution for the Navier-Stokes equations. The Richardson extrapolation is used to estimate the model error. The compressor cascade is made of NACA0065-009 airfoils. The Reynolds number 3.82 × 105 and the attack angles −2° to 7° are accounted for in the study. The effects of the end-walls, attack angle, and tripping bands on the flow are analyzed. The PES results are compared with the experimental data as well as the LES results using the Smagorinsky, k-equation and WALE subgrid models. The numerical results show that the PES requires a lower mesh resolution than the other LES methods. The details of the flow field including the laminar-turbulence transition can be directly captured from the PES results without introducing any additional model. These characteristics make the PES a potential method for simulating flows in turbomachinery with high Reynolds numbers.


AIAA Journal ◽  
2010 ◽  
Vol 48 (6) ◽  
pp. 1130-1140 ◽  
Author(s):  
Ya'eer Kidron ◽  
Yair Mor-Yossef ◽  
Yuval Levy

1994 ◽  
Vol 12 (1) ◽  
pp. 44-61
Author(s):  
Andrzej Teodorczyk ◽  
Stanislaw Wójcicki

A new experimental technique was used to investigate single fuel droplet combustion during forced convection: the burning droplet was freely suspended in the controlled air stream, without any additional support. Based on the photo-records of the burning process, the characteristics of the change of square of droplet diameter with time were made and the actual values of burning constants were determined for four hydrocarbon fuels: ben zene, n-heptane, iso-octane and toluene. The experiments were also carried out under micro-gravity and free convection conditions for the same set of fuels. The investigations have allowed the comparison of the burning mechanism of a single droplet for the three different external conditions and have compared quantitatively the burning constants. On the basis of the color pictures of the droplet burning under forced convection conditions and the temperature and gas concentration measurements within the flame, the mechanism of combus tion of fuel droplet was explained. The physical and mathematical models of the process have been proposed which included the aerodynamics of the droplet located in the high Reynolds number air stream, the energy balance of the evaporating droplet and the chemical reaction in the flow. The models have made it possible to determine the quantitative dependence of the burning con stant of different kinds of fuels on Reynolds number, the flow field parameters and the physical and chemical parameters of the liquid and its close surround ings. The calculated values of the parameters describing the burning pro cess have been compared to the experimental data and to the results reported by other investigators. The model has revealed the importance of the feed back mechanism between physical processes involved during droplet combus tion.


2005 ◽  
Vol 532 ◽  
pp. 53-62 ◽  
Author(s):  
AXEL MERLE ◽  
DOMINIQUE LEGENDRE ◽  
JACQUES MAGNAUDET

1994 ◽  
Vol 116 (4) ◽  
pp. 677-684 ◽  
Author(s):  
M. D. Su ◽  
R. Friedrich

Large eddy simulations have been performed in straight ducts with square cross section at a global Reynolds number of 49,000 in order to predict the complicated mean and instantaneous flow involving turbulence-driven secondary motion. Isotropic grid systems were used with spatial resolutions of 256 * 642. The secondary flow not only turned out to develop extremely slowly from its initial conditions but also to require fairly high resolution. The obtained statistical results are compared with measurements. These results show that the large eddy simulation (LES) is a powerful approach to simulate the complex turbulence flow with high Reynolds number. Streaklines of fluid particles in the duct show the secondary flow clearly. The database obtained with LES is used to examine a statistical turbulence model and describe the turbulent vortex structure in the fully developed turbulent flow in a straight duct.


Author(s):  
Noriyuki Furuichi ◽  
Yoshiya Terao ◽  
Shinichi Nakao ◽  
Keiji Fujita ◽  
Kazuo Shibuya

The discharge coefficients of the throat tap flow nozzle based on ASME PTC 6 are measured in wide Reynolds number range from Red=5.8×104 to Red=1.4×107. The nominal discharge coefficient (the discharge coefficient without tap) is determined from the discharge coefficients measured for different tap diameters. The tap effects are correctly obtained by subtracting the nominal discharge coefficient from the discharge coefficient measured. Finally, by combing the nominal discharge coefficient and the tap effect determined in three flow regions, that is, laminar, transitional and turbulent flow region, the new equations of the discharge coefficient are proposed in three flow regions.


2012 ◽  
Vol 36 (1) ◽  
pp. 379-398 ◽  
Author(s):  
S.J. Karabelas ◽  
B.C. Koumroglou ◽  
C.D. Argyropoulos ◽  
N.C. Markatos

Sign in / Sign up

Export Citation Format

Share Document