Machining Accuracy Analysis for Computer-aided Fixture Design Verification

1996 ◽  
Vol 118 (3) ◽  
pp. 289-300 ◽  
Author(s):  
Y. Rong ◽  
Y. Bai

This paper presents a machining accuracy analysis for computer-aided fixture design verification. While discussing the utilization of CNC machine tools and machining centers, machining errors are described in terms of deterministic and random components and analyzed on the bases of their sources, where high machining accuracy and multi-operation under a single setup become major characteristics of manufacturing systems. In machining processes, a resultant dimension may be generated in terms of several relevant dimensions. The dependency of variation among these dimensions is examined and the relationships of locating datum and machining surfaces are analyzed. Variation among linear and angular dimensions are considered. Five basic models of dimension variation relationships are proposed to estimate the machining error, where different formulas of resultant dimension variation are given for different combinations of variation among relevant dimensions. A datum-machining surface relationship graph (DMG) is developed to represent the dependent relationships. A matrix-based reasoning algorithm is designed to search for the shortest path in the DMG. Once the relationship between a specified pair of surfaces is identified, different models of corresponding relationships may be utilized to estimate the possible machining errors which can be used to compare the fixturing accuracy requirement.

2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110027
Author(s):  
Byung Chul Kim ◽  
Ilhwan Song ◽  
Duhwan Mun

Manufacturers of machine parts operate computerized numerical control (CNC) machine tools to produce parts precisely and accurately. They build computer-aided manufacturing (CAM) models using CAM software to generate code to control these machines from computer-aided design (CAD) models. However, creating a CAM model from CAD models is time-consuming, and is prone to errors because machining operations and their sequences are defined manually. To generate CAM models automatically, feature recognition methods have been studied for a long time. However, since the recognition range is limited, it is challenging to apply the feature recognition methods to parts having a complicated shape such as jet engine parts. Alternatively, this study proposes a practical method for the fast generation of a CAM model from CAD models using shape search. In the proposed method, when an operator selects one machining operation as a source machining operation, shapes having the same machining features are searched in the part, and the source machining operation is copied to the locations of the searched shapes. This is a semi-automatic method, but it can generate CAM models quickly and accurately when there are many identical shapes to be machined. In this study, we demonstrate the usefulness of the proposed method through experiments on an engine block and a jet engine compressor case.


Author(s):  
N. A. Fountas ◽  
A. A. Krimpenis ◽  
N. M. Vaxevanidis

Extracting CNC machining data on- or off-line demands thorough and careful planning. Exploitation of this data can be carried out by statistical methods, in order to obtain the most influential parameters along with their respective level of significance. However, significance of machining parameters varies according to the posed Quality Characteristics at each machining phase. In actual experiments, measuring devices and assemblies are used, and data is recorded in computer archives. To shorten the production time and cost, machining processes are planned on CAM software, especially when complex part geometries, such as sculptured surfaces, are involved. Hence, planning machining experiments using CAM software modules is an efficient approach for experimentation on the actual CNC machine tools. Data extraction and statistical analysis methodologies are presented along with respective machining experimental examples.


Manufacturing ◽  
2003 ◽  
Author(s):  
Fathianathan Mervyn ◽  
A. Senthil Kumar ◽  
Bok Shung Hwee ◽  
Andrew Nee Yeh Ching

A crucial factor in the success of developing integrated manufacturing systems lies in the ability to exchange information among the various computer-aided systems. Although a vast amount of research has been conducted on computer-aided fixture design systems, the need for information exchange between a fixture design system and other manufacturing systems has not been dealt with thoroughly. Models for the exchange of information within an enterprise or within an extended enterprise depend on the functionality and behaviour of individual enterprises. One means of developing an information model for an enterprise is to determine the information requirements by modelling the enterprise. However, this results in a monolithic model that is only applicable to that enterprise. As a solution to this drawback, we describe the development of a reference model for fixture design information support, which can be instantiated to be applied to different types of enterprises. We concentrate on machining fixtures and information form the fixture design domain to other domains.


2014 ◽  
Vol 635-637 ◽  
pp. 407-410
Author(s):  
Shuang Yong Wang ◽  
Wei Zhang ◽  
Qian Wei Zhang ◽  
Jian Hua Yang ◽  
Peng Fei Zhang

As a core feature of high-end CNC machine tools, the torque carrying performance of five-axis milling head directly affects the machining accuracy and reliability. Through theoretical analysis and derivation, combining experimental prototype, the A/C-axis cutting torque formula of five-axis milling head on woodworking is obtained. The reliability analysis provides a theoretical basis for drive motor selection and five-axis milling head structural optimization and improvement.


2021 ◽  
Author(s):  
◽  
Jonathan William Murdoch

<p>Throughout history the use of scale representations has been important in the process of creating architecture. In recent times the introduction of computer-aided design (CAD) has significantly altered traditional methods of conceptual design representation, mainly through a shift from the physical to the virtual. The aim of the research is to explore the relationship between computer aided manufacturing (CAM) and the methods for extracting and producing qualities of a conceptual nature from computer and numerically controlled (CNC) machine, and how this could advance conceptual creativity formulating in buildable form. The qualities that are inherently produced by CNC machining processes are then captured back into the three-dimensional environment (CAD), and then re-exported via CNC machining. The information that flows from the digital to the physical and then back again, creates new physical qualities that would not normally be produced, and allows for further investigation. Through the misrepresentation and reinterpretation of machine processes in this research, the output produces an object of an abstract nature created through identifying extraordinary expressions of tool paths. This 1:1 abstract object expresses qualities of craft produced by the CNC machine and creates a new form of craft that can be compared to the expression of the traditional craftsman and their trade. This simple movement between scales and formats begins to generate new design processes that in turn translate the conceptual expression of the object into a buildable form. On final completion of the object this project has proven that CAM conceptual creativity can be translated and formulated into built form. A key observation of this research is that identifying CAM production techniques can produce abstract representation through a new means of design representation.</p>


Author(s):  
Santosh Kumar Thukaram ◽  
Qingjin Peng ◽  
Subramaniam Balikrishnan

Fixtures are important components in manufacturing systems. Fixturing changes because of manufacturing changing from mass production to production in smaller batches and higher variety of products. Computer-aided fixture design (CAFD) systems automate the process of fixture design and verification. Research work has mainly concentrated either on automating the CAFD process or on making it user-friendly and interactive. However a final fixturing scheme may not be optimal because different users may need fixtures to meet different requirements, this paper proposes a conceptual module for the fixture validation to compare, test and analyze various combinations of fixturing elements. A fixture validation model is developed using a virtual reality (VR) system to support the idea presented in this paper.


Author(s):  
Joseph Piacenza ◽  
Kenneth J. Faller ◽  
Bradley Regez ◽  
Luisfernando Gomez

Abstract Motivated by cyber-physical vulnerabilities in precision manufacturing processes, there is a need to externally examine the operational performance of Computer Numerically Controlled (CNC) manufacturing systems. The overarching objective of this work is to design and fabricate a proof-of-concept CNC machine evaluation device, ultimately re-configurable to the mill and lathe machine classes. This device will assist in identifying potential cyber-physical security threats in manufacturing systems by identifying perturbations, outside the expected variations of machining processes, and comparing the desired command inputted into the numerical controller and the actual machine performance (e.g., tool displacement, frequency). In this directed research, a device design is presented based on specific performance requirements provided by the project sponsor. The first design iteration is tested on a Kuka KR 6 R700 series robotic arm, and machine movement comparisons are performed ex-situ using Keyence laser measurement sensors. Data acquisition is performed with a Raspberry Pi 4 microcomputer, controlled by custom, cross-platform Python code, and includes a touch screen human-computer interface. A device design adapted for a CNC mill is also presented, and the Haas TM-2 is used as a case study, which can be operated by technicians to check CNC machine accuracy, as needed, before a critical manufacturing process.


Author(s):  
Wencai Wang ◽  
Derek M. Yip-Hoi

Cycle time calculation plays a major role in the design of manufacturing systems. Accurate estimates are needed to correctly determine the capacity of a line in terms of the number of machines that must be purchased. Over estimation results in excess capacity and under estimation leads to unsatisfied demand. Due to the high automation and cutting speeds of modern machining processes, cycle time calculation must consider both the timing of various machining actions and the kinematics of feed motions. This paper presents a cycle time calculation algorithm that gives accurate cycle time results by considering the effects of jerk and acceleration of the machine tool drives. The kinematic model for axis motion is based on trapezoidal acceleration profiles along the toolpaths. Based on this model, an algorithm for identifying the kinematic parameters has been developed. This algorithm has the advantage of utilizing a minimal set of axis motion data thus reducing the amount of data that must be collected from experiments by the machine tool vendor or the machine tool’s enduser. The proposed cycle time calculation algorithm has been verified in machining a V6 cylinder head on a four axis CNC machine.


Sign in / Sign up

Export Citation Format

Share Document