machining errors
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 38)

H-INDEX

16
(FIVE YEARS 3)

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 3018
Author(s):  
Jinjing Luo ◽  
Jin Xu ◽  
Pengcheng Yin ◽  
Ruichao Yang ◽  
Lingna Yue ◽  
...  

A phase shift that is caused by the machining errors of independent circuits would greatly affect the efficiency of the power combination in traditional multi-beam structures. In this paper, to reduce the influence of the phase shift and improve the output power, a multi-beam shunted coupling sine waveguide slow wave structure (MBSC-SWG-SWS) has been proposed, and a multi-beam overmoded flat-roofed SWG traveling wave tube (TWT) based on the MBSC-SWG-SWS was designed and analyzed. A TE10-TE30 mode convertor was designed as the input/output coupler in this TWT. The results of the 3D particle-in-cell (PIC) simulation with CST software show that more than a 50 W output power can be produced at 342 GHz, and the 3 dB bandwidth is about 13 GHz. Furthermore, the comparison between the single-beam sine waveguide (SWG) TWT and the multi-beam overmoded SWG TWT indicates that the saturated output power of the multi-beam overmoded SWG TWT is three times more than that of the single beam SWG TWT.


2021 ◽  
Vol 67 (5) ◽  
pp. 77-84
Author(s):  
Hongbin YU ◽  
Qingyuan GUO ◽  
Honghuan YIN ◽  
Junqiang PENG

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3438
Author(s):  
Ange Lin ◽  
Jian Wu ◽  
Haohao Li ◽  
Zhe Li ◽  
Benlong Su ◽  
...  

The tribological characteristics of the cylinder directly affect the operation accuracy of the pneumatic servo system. However, the geometric error has a significant effect on its tribological behavior and the related research is insufficient. Thus, the dynamic friction process of rubber seals has been investigated considering the influence of geometric errors. Firstly, based on the self-made friction test platform, the friction force of the rubber seals was studied and the influence law of geometric error on the contact area of the rubber seal ring was revealed. Secondly, the numerical model of the friction and contact of the rubber seals for the cylinder segment was developed by using the finite element simulation method and the influence laws of machining errors, such as roundness and straightness on the friction characteristics, were revealed. Finally, synergy effects of roundness and straightness in the friction behavior of rubber seals considering geometric errors was investigated, which lays a foundation for the accurate prediction of cylinder dynamic mechanical properties.


Author(s):  
Hangzhuo Yu ◽  
Han Zhong ◽  
Yong Chen ◽  
Lei Lin ◽  
Jing Shi ◽  
...  

Large aerospace thin-walled structures will produce deformation and vibration in the machining process, which will cause machining error. In this paper, a cutting experimental method based on multi-layer machining is proposed to analyze the influence of cutting tool, cutting path, and cutting parameters on machining error in order to obtain the optimal cutting variables. Firstly, aiming at the situation that the inner surface of the workpiece deviates from the design basis, the laser scanning method is used to obtain the actual shape of the inner surface, and the method of feature alignment is designed to realize the unification of the measurement coordinate system and machining coordinate system. Secondly, a series of cutting experiments are used to obtain the machining errors of wall thickness under different cutting tools, cutting paths, and cutting parameters, and the variation of machining errors is analyzed. Thirdly, a machining error prediction model is established to realize the prediction of machining error, and the multi-objective optimization method is used to optimize the cutting parameters. Finally, a machining test was carried out to validate the proposed cutting experimental method and the optimal cutting parameters.


2021 ◽  
Vol 2021 (3) ◽  
pp. 4526-4533
Author(s):  
E. Yuksel ◽  
◽  
E. Budak ◽  
E. Ozlu ◽  
A. Oral ◽  
...  

Continuous rotation of spindle bearings and motor cause thermally induced structural deformations and thermal growth, which is one of the main reasons for machining errors. A positive feedback loop between bearing preload and heat generation causes preload variations in spindle bearings. These preload variations demonstrate a nonlinear transient behavior until the gradual expansion of outer bearing rings after which the thermally induced preload variation behaves steadily. In this study, a Finite Element (FE) framework is presented for predicting steady preload variation on spindle bearings. The method involves a thermal loading model and a transient contact analysis. In the contact analysis phase bearing contact deformations (penetration and sliding) and pressure are predicted by considering contact algorithms in an FE software. A transient spindle simulation in FE is employed to predict the bearing temperature and thermal spindle growth by using the proposed method. The performance of the method is demonstrated on a spindle prototype through bearing temperature and thermal deformation measurements. Results show that the proposed method can be a useful tool for spindle design and improvements due to its promising results and speed without the need for tests.


2021 ◽  
Vol 2021 (3) ◽  
pp. 4692-4697
Author(s):  
C. Gißke ◽  
◽  
T. Albrecht ◽  
H, Wiemer ◽  
W. Esswein ◽  
...  

In most sectors of today’s industry, there is the requirement to manufacture work pieces with accuracy in micron range. However, maintaining this accuracy can be considerably impeded by thermally induced displacements which arise in the production process. Thermally induced errors cause large parts of residual machining errors on modern machine tools. Using climate control systems for whole workshops can counteract these errors. Yet, this method is extremely cost and energy intensive. To increase machine accuracy and meet the industrial demands in a more efficient way, research offers various methods to minimize this error. These methods differ greatly in their approaches and requirements. Some intervene in the machine structure, while others are based on thermomechanical models and need to be integrated into the software of the control system as correction algorithms. Since machine tools also vary in their kinematic structure and complexity, it is difficult for potential users to select suitable solutions and estimate the effort required to implement them with the available resources. This paper presents a systematization and taxonomy of such methods, which was elaborated based on solutions developed in the project CRC/TR 96. By conducting semi-structured expert interviews, the functional principle, prerequisites and resources required for the application of each solution were recorded, categorized and evaluated in terms of their effort. Based on the presented systematization, it is possible to compare these different methods and evaluate them regarding their implementation effort and flexibility. This is the first step towards a user-specific evaluation of these methods in the future and towards facilitating the transfer of this fundamental research into industrial application.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ansheng Zhang ◽  
Mingyu Zhang ◽  
Jing Wang ◽  
Jianjun Zhang ◽  
Zhaohua Shang ◽  
...  

Purpose The purpose of this paper is to study the influence of surface precision on the lubrication state of the roller chain under adequate and rare oil supply conditions, respectively. Design/methodology/approach The straightness error and roughness error of the pin generatrices were measured and the influence of surface precision on the lubrication behavior under steady state and reciprocating motion was studied through optical interference experiments. Findings The lubrication state is strongly influenced by the surface precision of the roller surface both under adequate oil supply and rare oil supply conditions. Originality/value In industrial applications, the machining errors of parts cannot be completely eliminated. Studying the influence of the surface precision on the lubrication behavior of pin–bush pairs can provide the experimental basis for the optimal design of the bush roller chains.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 607
Author(s):  
Zelong Li ◽  
Yifan Dai ◽  
Chaoliang Guan ◽  
Jiahao Yong ◽  
Zizhou Sun ◽  
...  

Weak-stiffness mirrors are widely used in various fields such as aerospace and optoelectronic information. However, it is difficult to achieve micron-level precision machining because weak-stiffness mirrors are hard to clamp and are prone to deformation. The machining errors of these mirrors are randomly distributed and non-rotationally symmetric, which is difficult to overcome by common machining methods. Based on the fast tool servo system, this paper proposes a high-precision machining method for weak-stiffness mirrors. Firstly, the clamping error and cutting error compensation strategy is obtained by analyzing the changing process of the mirror surface morphology. Then, by combining real-time monitoring and theoretical simulation, the elastic deformation of the weak-stiffness mirror is accurately extracted to achieve the compensation of the clamping error, and the compensation of the cutting error is achieved by iterative machining. Finally, a weak-stiffness mirror with a thickness of 2.5 mm was machined twice, and the experimental process produced a clamping error with a peak to valley (PV) value of 5.2 µm and a cutting error with a PV value of 1.6 µm. The final machined surface after compensation had a PV value of 0.7 µm. The experimental results showed that the compensation strategy proposed in this paper overcomes the clamping error of the weak-stiffness mirror and significantly reduces cutting errors during the machining process, achieving the high precision machining of a weak-stiffness mirror.


Sign in / Sign up

Export Citation Format

Share Document