A Mathematical Model of Bird Collisions With Wind Turbine Rotors

1996 ◽  
Vol 118 (4) ◽  
pp. 253-262 ◽  
Author(s):  
V. A. Tucker

When a bird flies through the disk swept out by the blades of a wind turbine rotor, the probability of collision depends on the motions and dimensions of the bird and the blades. The collision model in this paper predicts the probability for birds that glide upwind, downwind, and across the wind past simple one-dimensional blades represented by straight lines, and upwind and downwind past more realistic three-dimensional blades with chord and twist. Probabilities vary over the surface of the disk, and in most cases, the tip of the blade is less likely to collide with a bird than parts of the blade nearer the hub. The mean probability may be found by integration over the disk area. The collision model identifies the rotor characteristics that could be altered to make turbines safer for birds.

2014 ◽  
Vol 39 ◽  
pp. 874-882 ◽  
Author(s):  
B. Rašuo ◽  
M. Dinulović ◽  
A. Veg ◽  
A. Grbović ◽  
A. Bengin

2022 ◽  
pp. 0309524X2110693
Author(s):  
Alejandra S Escalera Mendoza ◽  
Shulong Yao ◽  
Mayank Chetan ◽  
Daniel Todd Griffith

Extreme-size wind turbines face logistical challenges due to their sheer size. A solution, segmentation, is examined for an extreme-scale 50 MW wind turbine with 250 m blades using a systematic approach. Segmentation poses challenges regarding minimizing joint mass, transferring loads between segments and logistics. We investigate the feasibility of segmenting a 250 m blade by developing design methods and analyzing the impact of segmentation on the blade mass and blade frequencies. This investigation considers various variables such as joint types (bolted and bonded), adhesive materials, joint locations, number of joints and taper ratios (ply dropping). Segmentation increases blade mass by 4.1%–62% with bolted joints and by 0.4%–3.6% with bonded joints for taper ratios up to 1:10. Cases with large mass growth significantly reduce blade frequencies potentially challenging the control design. We show that segmentation of an extreme-scale blade is possible but mass reduction is necessary to improve its feasibility.


Sign in / Sign up

Export Citation Format

Share Document