On Efficient Computation of the Steady-State Response of Linear Systems With Periodic Coefficients

1996 ◽  
Vol 118 (3) ◽  
pp. 522-526 ◽  
Author(s):  
T. J. Selstad ◽  
K. Farhang

An efficient method for obtaining the steady-state response of linear systems with periodically time varying coefficients is developed. The steady-state solution is obtained by dividing the fundamental period into a number of intervals and establishing, based on a fourth-order Rung-Kutta formulation, the relation between the response at the start and end of the period. Imposition of periodicity condition upon the response facilitates computation of the initial condition that yields the steady-state values in a single pass; i.e., integration over only one period. Through a practical example, the method is shown to be more accurate and computationally more efficient than other known methods for computing the steady-state response.

Author(s):  
Tyler J. Selstad ◽  
Kambiz Farhang

Abstract An efficient method for obtaining the steady-state response of linear systems with periodically time varying coefficients is developed. The steady-state solution is obtained by dividing the fundamental period into a number of intervals and establishing, based on a fourth-order Rung-Kutta formulation, the relation between the response at the start and end of the period. Imposition of periodicity condition upon the response facilitates computation of the initial condition that yields the steady-state values in a single pass; i.e. integration over only one period. Through a practical example, the method is shown to be more accurate and computationally more efficient than other known methods for computing the steady-state response.


1995 ◽  
Vol 117 (4) ◽  
pp. 633-639 ◽  
Author(s):  
K. Farhang ◽  
A. Midha

This paper presents the development of an efficient and direct method for evaluating the steady-state response of periodically time-varying linear systems. The method is general, and its efficacy is demonstrated in its application to a high-speed elastic mechanism. The dynamics of a mechanism comprised of elastic members may be described by a system of coupled, inhomogeneous, nonlinear, second-order partial differential equations with periodically time-varying coefficients. More often than not, these governing equations may be linearized and, facilitated by separation of time and space variables, reduced to a system of linear ordinary differential equations with variable coefficients. Closed-form, numerical expressions for response are derived by dividing the fundamental time period of solution into subintervals, and establishing an equal number of continuity constraints at the intermediate time nodes, and a single periodicity constraint at the end time nodes of the period. The symbolic solution of these constraint equations yields the closed-form numerical expression for the response. The method is exemplified by its application to problems involving a slider-crank mechanism with an elastic coupler link.


Author(s):  
Kambiz Farhang ◽  
Ashok Midha

Abstract This paper presents the development of an efficient and direct method for evaluating the steady-state response of periodically time-varying linear systems. The method is general, and its efficacy is demonstrated in its application to a high-speed elastic mechanism. The dynamics of a mechanism comprised of elastic members may be described by a system of coupled, inhomogeneous, nonlinear, second-order partial differential equations with periodically time-varying coefficients. More often than not, these governing equations may be linearized and, facilitated by separation of time and space variables, reduced to a system of linear ordinary differential equations with variable coefficients. Closed-form, numerical expressions for response are derived by dividing the fundamental time period of solution into subintervals, and establishing an equal number of continuity constraints at the intermediate time nodes, and a single periodicity constraint at the end time nodes of the period. The symbolic solution of these constraint equations yields the closed-form numerical expression for the response. The method is exemplified by its application to problems involving a slider-crank mechanism with an elastic coupler link.


Geophysics ◽  
1936 ◽  
Vol 1 (3) ◽  
pp. 336-339 ◽  
Author(s):  
M. M. Slotnick

The Seismic Electric Effect gives rise to the problem of finding the steady state response of a circuit consisting of an inductance and a response of a circuit consisting of an inductance and a resistance of the form R+A cos cot (R>A) in series with a D.C. input. In this paper a solution is given, other than the one usually obtained by the method of successive approximations.


1983 ◽  
Vol 105 (3) ◽  
pp. 551-556 ◽  
Author(s):  
D. L. Taylor ◽  
B. R. K. Kumar

This paper considers the steady-state response due to unbalance of a planar rigid rotor carried in a short squeeze film damper with linear centering spring. The damper fluid forces are determined from the short bearing, cavitated (π film) solution of Reynold’s equation. Assuming a circular centered orbit, a change of coordinates yields equations whose steady-state response are constant eccentricity and phase angle. Focusing on this steady-state solution results in reducing the problem to solutions of two simultaneous algebraic equations. A method for finding the closed-form solution is presented. The system is nondimensionalized, yielding response in terms of an unbalance parameter, a damper parameter, and a speed parameter. Several families of eccentricity-speed curves are presented. Additionally, transmissibility and power consumption solutions are present.


Sign in / Sign up

Export Citation Format

Share Document