An Evolutionary Wolff’s Law for Trabecular Architecture

1992 ◽  
Vol 114 (1) ◽  
pp. 129-136 ◽  
Author(s):  
S. C. Cowin ◽  
A. M. Sadegh ◽  
G. M. Luo

A continuum model is proposed to describe the temporal evolution of both the density changes and the reorientation of the trabecular architecture given the applied stress state in the bone and certain material parameters of the bone. The data upon which the proposed model is to be based consist of experimentally determined remodeling rate coefficients and quantitative stereological and anisotropic elastic constant measurements of cancellous bone. The model shows that the system of differential equations governing the temporal changes in architecture is necessarily nonlinear. This nonlinearity is fundamental in that it stems from the fact that, during remodeling, the relationship between stress and strain is changing as the stress and strain variables themselves are changing. In order to preserve the remodeling property of the model, terms that are of the order strain times the changes in density and/or microstructural properties must be retained. If these terms were dropped, there would be no feedback mechanism for architectural adaptation and no adaptation of the trabecular architecture. There is, therefore, no linearized version of this model of the temporal evolution of trabecular architecture. An application of the model is illustrated by an example problem in which the temporal evolution of homogeneous trabecular architecture is predicted. A limitation of the proposed continuum model is the length scale below which it cannot be applied. The model cannot be applied in regions of cancellous bone where the trabecular bone architecture is relatively inhomogeneous or at a bone-implant interface.

1986 ◽  
Vol 108 (1) ◽  
pp. 83-88 ◽  
Author(s):  
S. C. Cowin

An elastic constitutive relation for cancellous bone tissue is developed. This relationship involves the stress tensor T, the strain tensor E and the fabric tensor H for cancellous bone. The fabric tensor is a symmetric second rank tensor that is a quantitative stereological measure of the microstructural arrangement of trabeculae and pores in the cancellous bone tissue. The constitutive relation obtained is part of an algebraic formulation of Wolff’s law of trabecular architecture in remodeling equilibrium. In particular, with the general constitutive relationship between T, H and E, the statement of Wolff’s law at remodeling equilibrium is simply the requirement of the commutativity of the matrix multiplication of the stress tensor and the fabric tensor at remodeling equilibrium, T* H* = H* T*. The asterisk on the stress and fabric tensor indicates their values in remodeling equilibrium. It is shown that the constitutive relation also requires that E* H* = H* E*. Thus, the principal axes of the stress, strain and fabric tensors all coincide at remodeling equilibrium.


Author(s):  
Christoph Oefner ◽  
Elena Riemer ◽  
Kerstin Funke ◽  
Michael Werner ◽  
Christoph-Eckhard Heyde ◽  
...  

AbstractIn biomechanics, large finite element models with macroscopic representation of several bones or joints are necessary to analyze implant failure mechanisms. In order to handle large simulation models of human bone, it is crucial to homogenize the trabecular structure regarding the mechanical behavior without losing information about the realistic material properties. Accordingly, morphology and fabric measurements of 60 vertebral cancellous bone samples from three osteoporotic lumbar spines were performed on the basis of X-ray microtomography (μCT) images to determine anisotropic elastic parameters as a function of bone density in the area of pedicle screw anchorage. The fabric tensor was mapped in cubic bone volumes by a 3D mean-intercept-length method. Fabric measurements resulted in a high degree of anisotropy (DA = 0.554). For the Young’s and shear moduli as a function of bone volume fraction (BV/TV, bone volume/total volume), an individually fit function was determined and high correlations were found (97.3 ≤ R2 ≤ 99.1,p < 0.005). The results suggest that the mathematical formulation for the relationship between anisotropic elastic constants and BV/TV is applicable to current μCT data of cancellous bone in the osteoporotic lumbar spine. In combination with the obtained results and findings, the developed routine allows determination of elastic constants of osteoporotic lumbar spine. Based on this, the elastic constants determined using homogenization theory can enable efficient investigation of human bone using finite element analysis (FEA).


1999 ◽  
Vol 194 (3) ◽  
pp. 407-421 ◽  
Author(s):  
S. M. SHAHTAHERI ◽  
J. E. AARON ◽  
D. R. JOHNSON ◽  
S. K. PAXTON

Sign in / Sign up

Export Citation Format

Share Document