The Application of Command Shaping to the Tracking Problem

Author(s):  
Michael C. Reynolds ◽  
Peter H. Meckl

This work presents a novel technique for the solution of an optimal input for trajectory tracking. Many researchers have documented the performance advantages of command shaping, which focuses on the design of an optimal input. Nearly all research in command shaping has been centered on the point-to-point motion control problem. However, tracking problems are also an important application of control theory. The proposed optimal tracking technique extends the point-to-point motion control problem to the solution of the tracking problem. Thus, two very different problems are brought into one solution scheme. The technique uses tolerances on trajectory following to meet constraints and minimize either maneuver time or input energy. A major advantage of the technique is that hard physical constraints such as acceleration or allowable tracking error can be directly constrained. Previous methods to perform such a task involved using various weightings that lack physical meaning. The optimal tracking technique allows for fast and efficient exploration of the solution space for motion control. A solution verification technique is presented and some examples are included to demonstrate the technique.

Author(s):  
Gerald Eaglin ◽  
Joshua Vaughan

The ability to track a trajectory without significant error is a vital requirement for mobile robots. Numerous methods have been proposed to mitigate tracking error. While these trajectory-tracking methods are efficient for rigid systems, many excite unwanted vibration when applied to flexible systems, leading to tracking error. This paper analyzes a modification of input shaping, which has been primarily used to limit residual vibration for point-to-point motion of flexible systems. Standard input shaping is modified using error-limiting constraints to reduce transient tracking error for the duration of the system’s motion. This method is simulated with trajectory inputs constructed using line segments and Catmull-Rom splines. Error-limiting commands are shown to improve both spatial and temporal tracking performance and can be made robust to modeling errors in natural frequency.


2004 ◽  
Vol 127 (4) ◽  
pp. 307-314 ◽  
Author(s):  
Jason Lawrence ◽  
William Singhose ◽  
Keith Hekman

Fast and accurate point-to-point motion is a common operation for industrial machines, but vibration will frequently corrupt such motion. This paper develops commands that can move machines without vibration, even in the presence of Coulomb friction. Previous studies have shown that input shaping can be used on linear systems to produce point-to-point motion with no residual vibration. This paper extends command-shaping theory to nonlinear systems, specifically systems with Coulomb friction. This idea is applied to a PD-controlled mass with Coulomb friction to ground. The theoretical developments are experimentally verified on a solder cell machine. The results show that the new commands allow the proportional gain to be increased, resulting in reduced rise time, settling time, and steady-state error.


2011 ◽  
Vol 58 (9) ◽  
pp. 4343-4352 ◽  
Author(s):  
Jianhua Wu ◽  
Zhenhua Xiong ◽  
Kok-Meng Lee ◽  
Han Ding

2011 ◽  
Vol 44 (1) ◽  
pp. 2458-2463 ◽  
Author(s):  
Lieboud Van den Broeck ◽  
Moritz Diehl ◽  
Jan Swevers

1986 ◽  
Vol 108 (2) ◽  
pp. 120-126 ◽  
Author(s):  
R. G. Fenton ◽  
B. Benhabib ◽  
A. A. Goldenberg

Control of a kinematically redundant robot arm requires an optimization procedure to determine the motion of the end effector. The criterion for optimization can be minimum motion time, minimum joint displacement increments or a combined merit function specified according to the requirements of the user. Three different methods may be used to perform the computations and obtain the joint coordinate increments for the point-to-point motion control of the robot. The methods are the “direct,” the “pseudoinverse” and the “generalized inverse” methods. These methods are described in detail in this paper, and results obtained with the three methods are compared on the basis of performing simulated tasks. It is concluded that the generalized inverse method is the most suitable, general method for point-to-point control of robots with more than six degrees-of-freedom.


Sign in / Sign up

Export Citation Format

Share Document