Turbulent Flow Near a Rough Wall

1992 ◽  
Vol 114 (4) ◽  
pp. 537-542 ◽  
Author(s):  
Yang-Moon Koh

By introducing the equivalent roughness which is defined as the distance from the wall to where the velocity gets a certain value (u/uτ ≈ 8.5) and which can be represented by a simple function of the roughness, a simple formula to represent the mean-velocity distribution across the inner layer of a turbulent boundary layer is suggested. The suggested equation is general enough to be applicable to turbulent boundary layers over surfaces of any roughnesses covering from very smooth to completely rough surfaces. The suggested velocity profile is then used to get expressions for pipe-friction factors and skin friction coefficients. These equations are consistent with existing experimental observations and embrace well-known equations (e.g., Prandtl’s friction law for smooth pipes and Colebrook’s formula etc.) as special cases.

1969 ◽  
Vol 73 (698) ◽  
pp. 143-147 ◽  
Author(s):  
M. K. Bull

Although a numerical solution of the turbulent boundary-layer equations has been achieved by Mellor and Gibson for equilibrium layers, there are many occasions on which it is desirable to have closed-form expressions representing the velocity profile. Probably the best known and most widely used representation of both equilibrium and non-equilibrium layers is that of Coles. However, when velocity profiles are examined in detail it becomes apparent that considerable care is necessary in applying Coles's formulation, and it seems to be worthwhile to draw attention to some of the errors and inconsistencies which may arise if care is not exercised. This will be done mainly by the consideration of experimental data. In the work on constant pressure layers, emphasis tends to fall heavily on the author's own data previously reported in ref. 1, because the details of the measurements are readily available; other experimental work is introduced where the required values can be obtained easily from the published papers.


2002 ◽  
Vol 124 (3) ◽  
pp. 664-670 ◽  
Author(s):  
Donald J. Bergstrom ◽  
Nathan A. Kotey ◽  
Mark F. Tachie

Experimental measurements of the mean velocity profile in a canonical turbulent boundary layer are obtained for four different surface roughness conditions, as well as a smooth wall, at moderate Reynolds numbers in a wind tunnel. The mean streamwise velocity component is fitted to a correlation which allows both the strength of the wake, Π, and friction velocity, Uτ, to vary. The results show that the type of surface roughness affects the mean defect profile in the outer region of the turbulent boundary layer, as well as determining the value of the skin friction. The defect profiles normalized by the friction velocity were approximately independent of Reynolds number, while those normalized using the free stream velocity were not. The fact that the outer flow is significantly affected by the specific roughness characteristics at the wall implies that rough wall boundary layers are more complex than the wall similarity hypothesis would allow.


2016 ◽  
Vol 801 ◽  
pp. 670-703 ◽  
Author(s):  
Hangjian Ling ◽  
Siddarth Srinivasan ◽  
Kevin Golovin ◽  
Gareth H. McKinley ◽  
Anish Tuteja ◽  
...  

Digital holographic microscopy is used for characterizing the profiles of mean velocity, viscous and Reynolds shear stresses, as well as turbulence level in the inner part of turbulent boundary layers over several super-hydrophobic surfaces (SHSs) with varying roughness/texture characteristics. The friction Reynolds numbers vary from 693 to 4496, and the normalized root mean square values of roughness $(k_{rms}^{+})$ vary from 0.43 to 3.28. The wall shear stress is estimated from the sum of the viscous and Reynolds shear stress at the top of roughness elements and the slip velocity is obtained from the mean profile at the same elevation. For flow over SHSs with $k_{rms}^{+}<1$, drag reduction and an upward shift of the mean velocity profile occur, along with a mild increase in turbulence in the inner part of the boundary layer. As the roughness increases above $k_{rms}^{+}\sim 1$, the flow over the SHSs transitions from drag reduction, where the viscous stress dominates, to drag increase where the Reynolds shear stress becomes the primary contributor. For the present maximum value of $k_{rms}^{+}=3.28$, the inner region exhibits the characteristics of a rough wall boundary layer, including elevated wall friction and turbulence as well as a downward shift in the mean velocity profile. Increasing the pressure in the test facility to a level that compresses the air layer on the SHSs and exposes the protruding roughness elements reduces the extent of drag reduction. Aligning the roughness elements in the streamwise direction increases the drag reduction. For SHSs where the roughness effect is not dominant ($k_{rms}^{+}<1$), the present measurements confirm previous theoretical predictions of the relationships between drag reduction and slip velocity, allowing for both spanwise and streamwise slip contributions.


2005 ◽  
Author(s):  
Rau´l Bayoa´n Cal ◽  
Xia Wang ◽  
Luciano Castillo

Applying similarity analysis to the RANS equations of motion for a pressure gradient turbulent boundary layer, Castillo and George [1] obtained the scalings for the mean deficit velocity and the Reynolds stresses. Following this analysis, Castillo and George studied favorable pressure gradient (FPG) turbulent boundary layers. They were able to obtain a single curve for FPG flows when scaling the mean deficit velocity profiles. In this study, FPG turbulent boundary layers are analyzed as well as relaminarized boundary layers subjected to an even stronger FPG. It is found that the mean deficit velocity profiles diminish when scaled using the Castillo and George [1] scaling, U∞, and the Zagarola and Smits [2] scaling, U∞δ*/δ. In addition, Reynolds stress data has been analyzed and it is found that the relaminarized boundary layer data decreases drastically in all components of the Reynolds stresses. Furthermore, it will be shown that the shape of the profile for the wall-normal and Reynolds shear stress components change drastically given the relaminarized state. Therefore, the mean velocity deficit profiles as well as Reynolds stresses are found to be necessary in order to understand not only FPG flows, but also relaminarized boundary layers.


1956 ◽  
Vol 1 (2) ◽  
pp. 191-226 ◽  
Author(s):  
Donald Coles

After an extensive survey of mean-velocity profile measurements in various two-dimensional incompressible turbulent boundary-layer flows, it is proposed to represent the profile by a linear combination of two universal functions. One is the well-known law of the wall. The other, called the law of the wake, is characterized by the profile at a point of separation or reattachment. These functions are considered to be established empirically, by a study of the mean-velocity profile, without reference to any hypothetical mechanism of turbulence. Using the resulting complete analytic representation for the mean-velocity field, the shearing-stress field for several flows is computed from the boundary-layer equations and compared with experimental data.The development of a turbulent boundary layer is ultimately interpreted in terms of an equivalent wake profile, which supposedly represents the large-eddy structure and is a consequence of the constraint provided by inertia. This equivalent wake profile is modified by the presence of a wall, at which a further constraint is provided by viscosity. The wall constraint, although it penetrates the entire boundary layer, is manifested chiefly in the sublayer flow and in the logarithmic profile near the wall.Finally, it is suggested that yawed or three-dimensional flows may be usefully represented by the same two universal functions, considered as vector rather than scalar quantities. If the wall component is defined to be in the direction of the surface shearing stress, then the wake component, at least in the few cases studied, is found to be very nearly parallel to the gradient of the pressure.


An experimental investigation has been made of turbulent boundary layer response to harmonic oscillations associated with a travelling wave imposed on an otherwise constant freestream velocity and convected in the freestream direction. The tests covered oscillation frequencies of 4-12 Hz for freestream amplitudes of up to 11% of the mean velocity. Additional steady flow measurements were used to infer the quasi-steady response to freestream oscillations. The results show a welcome insensitivity of the mean flow and turbulent intensity distributions to the freestream oscillations tested. An approximate analysis based on these results has been developed. It is probably of limited validity but it does provide a useful guide to the physical processes involved. The effects on boundary layer response of varying the travelling wave convection velocity and frequency of oscillation are illustrated by the analysis and show a behaviour broadly similar to that of laminar boundary layers. The travelling wave convection velocity exhibits a dominant influence on the turbulent boundary layer response to freestream oscillations.


1996 ◽  
Vol 118 (4) ◽  
pp. 787-794 ◽  
Author(s):  
A. C. Schwarz ◽  
M. W. Plesniak

A turbulent boundary layer subjected to multiple, additional strain rates, namely convex curvature coupled with streamwise pressure gradients (zero and favorable, ZPG and FPG) was investigated experimentally using laser Doppler velocimetry. The inapplicability of the universal flat-plate log-law to curved flows is discussed. However, a logarithmic region is found in the curved and accelerated turbulent boundary layer examined here. Similarity of the mean velocity and Reynolds stress profiles was achieved by 45 deg of curvature even in the presence of the strongest FPG investigated (k = 1.01 × 10−6). The Reynolds stresses were suppressed (with respect to flat plate values) due primarily to the effects of strong convex curvature (δo/R ≈ 0.10). In curved boundary layers subjected to different favorable pressure gradients, the mean velocity and normal Reynolds stress profiles collapsed in the inner region, but deviated in the outer region (y+ ≥ 100). Thus, inner scaling accounted for the impact of the extra strain rates on these profiles in the near-wall region. Combined with curvature, the FPG reduced the strength of the wake component, resulted in a greater suppression of the fluctuating velocity components and a reduction of the primary Reynolds shear stress throughout almost the entire boundary layer relative to the ZPG curved case.


2000 ◽  
Vol 408 ◽  
pp. 323-345 ◽  
Author(s):  
T. B. NICKELS ◽  
P. N. JOUBERT

This paper examines changes in the mean velocity profiles of turbulent boundary layers subjected to system rotation. Analysis of the data from several studies conducted in the large rotating wind tunnel at the University of Melbourne shows the existence of a universal linear correction to the velocity profile in the logarithmic region. The appropriate parameters relevant to rotation are derived and correlations are found between the parameters. Flows with adverse pressure gradients, zero pressure gradients and secondary flows are examined and all appear to exhibit the universal linear correction, suggesting that it is robust.


AIAA Journal ◽  
2003 ◽  
Vol 41 (4) ◽  
pp. 565-572 ◽  
Author(s):  
Matthias H. Buschmann ◽  
Mohamed Gad-El-Hak

Sign in / Sign up

Export Citation Format

Share Document