Heat Transfer Characterization of a Finned-Tube Heat Exchanger (With and Without Condensation)

1990 ◽  
Vol 112 (1) ◽  
pp. 64-70 ◽  
Author(s):  
S. A. Idem ◽  
A. M. Jacobi ◽  
V. W. Goldschmidt

The effects upon the performance of an air-to-water copper finned-tube crossflow heat exchanger due to condensation on the outer surface are considered. A four-tube, two-pass heat exchanger was tested over a Reynolds number range (based on hydraulic diameter) from 400 to 1500. The coil was operated both in overall parallel and overall counterflow configurations. Convective heat and mass transfer coefficients are presented as plots of Colburn j-factor versus Reynolds number. Pressure losses are, similarly, presented as plots of the friction factor versus Reynolds number. Enhancement of sensible heat transfer due to the presence of a condensate film is also considered.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
S. Paria ◽  
A. A. D. Sarhan ◽  
M. S. Goodarzi ◽  
S. Baradaran ◽  
B. Rahmanian ◽  
...  

An experimental as well as numerical investigation was conducted on the melting/solidification processes of a stationary phase change material (PCM) in a shell around a finned-tube heat exchanger system. The PCM was stored in the horizontal annular space between a shell and finned-tube where distilled water was employed as the heat transfer fluid (HTF). The focus of this study was on the behavior of PCM for storage (charging or melting) and removal (discharging or solidification), as well as the effect of flow rate on the charged and discharged solar thermal energy. The impact of the Reynolds number was determined and the results were compared with each other to reveal the changes in amount of stored thermal energy with the variation of heat transfer fluid flow rates. The results showed that, by increasing the Reynolds number from 1000 to 2000, the total melting time decreases by 58%. The process of solidification also will speed up with increasing Reynolds number in the discharging process. The results also indicated that the fluctuation of gradient temperature decreased and became smooth with increasing Reynolds number. As a result, by increasing the Reynolds number in the charging process, the theoretical efficiency rises.


2013 ◽  
Vol 732-733 ◽  
pp. 186-189
Author(s):  
Jing Zhao Zhang

A numerical investigation of the flow and heat transfer in a two-row finned-tube heat exchanger is conducted with a three-dimensional conjugated model using the CFD software. The results show that, compared to the quadrate slotted fin, the circular slotted fin have good heat transfer performance in that the percentage increase in heat transfer is higher than that in the friction factor. Within the Reynolds number range compared ( from 1,270 to 8,892), the Nusselt number of new slit 1 is about 25.6-61.6% and 20.8-57.5%, while new slit 2 is about 26.8-33.6% and 25.8-33.0%, higher than that of the quadrate slotted fin surface at identical pressure drop and the identical pumping power, respectively. For the two-row plate fin-and-tube heat exchanger, new slit 2 is recommended for the use in air-conditioning because its integrative design.


2016 ◽  
Vol 37 (2) ◽  
pp. 3-22 ◽  
Author(s):  
Pavan Kumar Konchada ◽  
Vinay Pv ◽  
Varaprasad Bhemuni

AbstractThe presence of nanoparticles in heat exchangers ascertained increment in heat transfer. The present work focuses on heat transfer in a longitudinal finned tube heat exchanger. Experimentation is done on longitudinal finned tube heat exchanger with pure water as working fluid and the outcome is compared numerically using computational fluid dynamics (CFD) package based on finite volume method for different flow rates. Further 0.8% volume fraction of aluminum oxide (Al2O3) nanofluid is considered on shell side. The simulated nanofluid analysis has been carried out using single phase approach in CFD by updating the user-defined functions and expressions with thermophysical properties of the selected nanofluid. These results are thereafter compared against the results obtained for pure water as shell side fluid. Entropy generated due to heat transfer and fluid flow is calculated for the nanofluid. Analysis of entropy generation is carried out using the Taguchi technique. Analysis of variance (ANOVA) results show that the inlet temperature on shell side has more pronounced effect on entropy generation.


Sign in / Sign up

Export Citation Format

Share Document