Heat transfer coefficients under dry- and wet-surface conditions for a spirally coiled finned tube heat exchanger

Author(s):  
Paisarn Naphon ◽  
Somchai Wongwises
1990 ◽  
Vol 112 (1) ◽  
pp. 64-70 ◽  
Author(s):  
S. A. Idem ◽  
A. M. Jacobi ◽  
V. W. Goldschmidt

The effects upon the performance of an air-to-water copper finned-tube crossflow heat exchanger due to condensation on the outer surface are considered. A four-tube, two-pass heat exchanger was tested over a Reynolds number range (based on hydraulic diameter) from 400 to 1500. The coil was operated both in overall parallel and overall counterflow configurations. Convective heat and mass transfer coefficients are presented as plots of Colburn j-factor versus Reynolds number. Pressure losses are, similarly, presented as plots of the friction factor versus Reynolds number. Enhancement of sensible heat transfer due to the presence of a condensate film is also considered.


2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Devanand D. Chillal ◽  
◽  
Uday C. Kapale ◽  
N.R. Banapurmath ◽  
T. M. Yunus Khan ◽  
...  

The work presented is an effort to realize the changes occurring for convective coefficients of heat transfer in STHX fitted with inclined baffles. Effort has been undertaken using Fluent, a commercially available CFD code ona CAD model of small STHX with inclined baffles with cold liquid flowing into the tubes and hot liquid flowing in the shell. Four sets of CFD analysis have been carried out. The hot liquid flow rate through shell compartments varied from 0.2 kg/sec to 0.8 kg/sec in steps of 0.2 kg/sec, while keeping the cold liquid flow condition in tube at 0.4 kg/sec constant. Heat transfer rates, compartment temperatures, and overall heat transfer coefficients, for cold liquid and hot liquid, were studied. The results given by the software using CFD approach were appreciable and comparatively in agreement with the results available by the experimental work, which was undertaken for the same set of inlet pressure conditions, liquid flow rates, and inlet temperatures of liquid for both hot and cold liquids. The experimental output results were also used to validate the results given by the CFD software. The results from the CFD analysis were further used to conclude the effect of baffle inclination on heat duty. The process thus followed also helped realize the effects of baffle inclination on convective heat transfer coefficient of the liquid flow through the shell in an inclined baffle shell and tube heat exchanger. The temperature plots for both cold and hot liquid were also generated for understanding the compartmental temperature distributions inclusive of the inlet and outlet compartments. The heat duty for a heat exchanger has been found to increase with the increase in baffle inclinations from zero degree to 20 degrees. Likewise, the convective heat transfer coefficients have also been found to increase with the increase in baffle inclinations.


2016 ◽  
Vol 37 (2) ◽  
pp. 3-22 ◽  
Author(s):  
Pavan Kumar Konchada ◽  
Vinay Pv ◽  
Varaprasad Bhemuni

AbstractThe presence of nanoparticles in heat exchangers ascertained increment in heat transfer. The present work focuses on heat transfer in a longitudinal finned tube heat exchanger. Experimentation is done on longitudinal finned tube heat exchanger with pure water as working fluid and the outcome is compared numerically using computational fluid dynamics (CFD) package based on finite volume method for different flow rates. Further 0.8% volume fraction of aluminum oxide (Al2O3) nanofluid is considered on shell side. The simulated nanofluid analysis has been carried out using single phase approach in CFD by updating the user-defined functions and expressions with thermophysical properties of the selected nanofluid. These results are thereafter compared against the results obtained for pure water as shell side fluid. Entropy generated due to heat transfer and fluid flow is calculated for the nanofluid. Analysis of entropy generation is carried out using the Taguchi technique. Analysis of variance (ANOVA) results show that the inlet temperature on shell side has more pronounced effect on entropy generation.


Sign in / Sign up

Export Citation Format

Share Document