Similarity Solution of Combined Convection Heat Transfer From a Rotating Cone or Disk to Non-Newtonian Fluids

1990 ◽  
Vol 112 (4) ◽  
pp. 939-944 ◽  
Author(s):  
T.-Y. Wang ◽  
C. Kleinstreuer

A powerful similarity solution of the highly nonlinear, coupled boundary-layer equations has been developed for steady laminar mixed convection heat transfer between a rotating cone/disk and power-law fluids. Of special interest are the effects of the power-law viscosity index, a generalized local Prandtl number, the buoyancy parameter, and the type of thermal wall condition on the velocity and temperature fields and hence the skin friction coefficient and the local Nusselt number. While the momentum boundary-layer thickness increases measurably with decreasing viscosity index n, the thermal boundary-layer thickness is less affected by changes in n. The magnitude and direction of the buoyancy force influence the upward velocity profile near the wall and the temperature profiles significantly. Both Prandtl number and buoyancy parameter have a more pronounced effect on the skin friction group, SFG ~ cf, than on the heat transfer group, HTG ~ Nu.

2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Jinhu Zhao ◽  
Liancun Zheng ◽  
Xinxin Zhang ◽  
Fawang Liu ◽  
Xuehui Chen

This paper investigates natural convection heat transfer of generalized Oldroyd-B fluid in a porous medium with modified fractional Darcy's law. Nonlinear coupled boundary layer governing equations are formulated with time–space fractional derivatives in the momentum equation. Numerical solutions are obtained by the newly developed finite difference method combined with L1-algorithm. The effects of involved parameters on velocity and temperature fields are presented graphically and analyzed in detail. Results indicate that, different from the classical result that Prandtl number only affects the heat transfer, it has remarkable influence on both the velocity and temperature boundary layers, the average Nusselt number rises dramatically in low Prandtl number, but increases slowly with the augment of Prandtl number. The maximum value of velocity profile and the thickness of momentum boundary layer increases with the augment of porosity and Darcy number. Moreover, the relaxation fractional derivative parameter accelerates the convection flow and weakens the elastic effect significantly, while the retardation fractional derivative parameter slows down the motion and strengthens the elastic effect.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Jize Sui ◽  
Liancun Zheng ◽  
Xinxin Zhang

A comprehensive analysis to convection heat transfer of power-law fluids along the inclined nonuniformly heated plate with suction or injection is presented. The effects of power-law viscosity on temperature field are taken into account in highly coupled velocity and temperature fields. Analytical solutions are established by homotopy analysis method (HAM), and the effects of pertinent parameters (velocity power-law exponent, temperature power index, suction/injection parameter, and inclination angle) are analyzed. Some new interesting phenomena are found, for example, unlike classical boundary layer problem in which the skin friction monotonically increases (decreases) with suction increases (injection increases), but there exists a special region where the skin friction is not monotonic, which is strongly bound up with Prandtl number, which have never been reported before. The nonmonotony occurs in suction region for Prandtl number Npr < 1 and injection region for Npr > 1. Results also illustrate that the velocity profile decreases but the heat convection is enhanced obviously with increasing in temperature power exponent m (generalized Prandtl number Npr has similar effects), the decreases in inclination angle lead to the reduction in convection and heat transfer efficiency.


1991 ◽  
Vol 69 (2) ◽  
pp. 83-89 ◽  
Author(s):  
G. Ramamurty ◽  
K. Narasimha Rao ◽  
K. N. Seetharamu

An integral approach to the theoretical analysis for the skin friction of a non-Newtonian, power-law-fluid flow over a wedge is presented, when the inertia terms in the boundary-layer equations are small but need consideration. The method adopted for the solution of the equations considers an integrated average value of the inertia terms in the momentum equation. The values of the velocities and the boundary-layer thickness obtained from the hydrodynamic analysis are used for the calculation of the thermal-boundary-layer thickness. A linear velocity profile is assumed for the flow field within the thermal boundary layer as the fluids chosen for the analysis are high-Prandtl-number fluids. The results of the skin friction and the rates of the heat transfer are tabulated for a number of values of the flow behaviour index, n, varying from 0.05 to 5.0. This analysis is applicable to viscous polymer solutions having high Prandtl numbers.


2018 ◽  
Vol 6 (2) ◽  
pp. 98-114 ◽  
Author(s):  
Hassan K. Abdullah ◽  
Haneen H. Rahman

Improvement of  free convection heat transfer from three finned cylinders arranged at a triangle shape fixed between two walls has been investigated in this study. Three mild steel finned cylinders fixed between two walls from Pyrex glass have been used as a test rig. It has been changed the spacing between the cylinders (X/D=1,2,3 & S/D=2,4,6) and the head orientation of a triangle to the top under constant heat flux values (38, 254, 660, 1268) W/m2 and compare with case of three finned cylinders arranged in vertical array in line fixed between two wall. The experiments are carried for Rayleigh number (Ra) from (15x103 to 14 x104 ) and Prandtl  number from (0.706-0.714 ). The results indicated an increase in Nu with increasing Ra for all cylinders. Furthermore,hx and Nu increased proportionally with the increasing of cylinder spacings for all heat fluxes. Also the experimental results show the case of triangle arrangement is improvement the heat transfer more than case of vertical arrangement. Heat transfer dimensionless correlating equation is also proposed.              Nomeclature: Ax: surface area(m2), T∞: surrounding temperature(k), D: the outer diameter of fin (m), Kf: the thermal conductivity for air at film temperature(W/m.k), hx: Local convection heat transfer(W/m2.k),  Gravitational acceleration(m/s2), I: Electric current (Amp), Nu: Nusselt number, Pr: Prandtl number


Author(s):  
Jaspinder Kaur ◽  
Roderick Melnik ◽  
Anurag Kumar Tiwari

Abstract In this present work, forced convection heat transfer from a heated blunt-headed cylinder in power-law fluids has been investigated numerically over the range of parameters, namely, Reynolds number (Re): 1–40, Prandtl number (Pr): 10–100 and power-law index (n): 0.3–1.8. The results are expressed in terms of local parameters, like streamline, isotherm, pressure coefficient, and local Nusselt number and global parameters, like wake length, drag coefficient, and average Nusselt number. The length of the recirculation zone on the rear side of the cylinder increases with the increasing value of Re and n. The effect of the total drag coefficient acting on the cylinder is seen to be higher at the low value of Re and its effect significant in shear-thinning fluids (n < 1). On the heat transfer aspect, the rate of heat transfer in fluids is increased by increasing the value of Re and Pr. The effect of heat transfer is enhanced in shear-thinning fluids up to ∼ 40% and it impedes it’s to ∼20% shear-thickening fluids. In the end, the numerical results of the total drag coefficient and average Nusselt number (in terms of J H −factor) have been correlated by simple expression to estimate the intermediate value for the new application.


Sign in / Sign up

Export Citation Format

Share Document