Planar Oscillatory Flow Forces at High Reynolds Numbers

1993 ◽  
Vol 115 (1) ◽  
pp. 31-39 ◽  
Author(s):  
J. R. Chaplin

Measurements of pressures around a circular cylinder with fine surface roughness in planar oscillatory flow reveal considerable changes in drag and inertia coefficients over the Reynolds number range 2.5 × 105 to 7.5 × 105, and at Keulegan-Carpenter numbers between 5 and 25. In most respects, these results are shown to be compatible with previous measurements in planar oscillatory flow, and with previous measurements in which the same 0.5-m-dia cylinder was tested in waves.

Author(s):  
Tilman Schröder ◽  
Sebastian Schuster ◽  
Dieter Brillert

The designers of radial turbomachinery need detailed information on the impact of the side chamber flow on axial thrust and torque. A previous paper investigated centripetal flow through narrow rotor–stator cavities and compared axial thrust, rotor torque and radial pressure distribution to the case without through-flow. Consequently, this paper extends the investigated range to centrifugal through-flow as it may occur in the hub side chamber of radial turbomachinery. The chosen operating conditions are representative of high-pressure centrifugal compressors used in, for example, carbon capture and storage applications as well as hydrogen compression. To date, only the Reynolds number range up to Re=2·107 has been investigated for centrifugal through-flow. This paper extends the range to Reynolds numbers of Re=2·108 and reports results of experimental and numerical investigations. It focuses on the radial pressure distribution in the rotor–stator cavity and shows the influence of the Reynolds number, cavity width and centrifugal mass flow rate. It therefore extends the range of available valid data that can be used to design radial turbomachinery. Additionally, this analysis compares the results to data and models from scientific literature, showing that in the higher Reynolds number range, a new correlation is required. Finally, the analysis of velocity profiles and wall shear delineates the switch from purely radial outflow in the cavity to outflow on the rotor and inflow on the stator at high Reynolds numbers in comparison to the results reported by others for Reynolds numbers up to Re=2·107.


1993 ◽  
Vol 59 (558) ◽  
pp. 342-348 ◽  
Author(s):  
Tsutomu Adachi ◽  
Hiroyuki Maeda ◽  
Masamitsu Shiono ◽  
Tetsuo Ozaki ◽  
Kazuo Matsuuchi ◽  
...  

Author(s):  
Noriyuki Furuichi ◽  
KarHooi Cheong ◽  
Yoshiya Terao ◽  
Shinichi Nakao ◽  
Keiji Fujita ◽  
...  

The high accurate throat tap flow nozzle with four different diameter taps is developed and its discharge coefficients are measured in the Reynolds number range from 1.5×106 to 1.4×107 using the high Reynolds calibration facility of AIST,NMIJ. The discharge coefficient of a throat tap nozzle extrapolated according to ASME PTC 6 are confirmed to deviate 0.37% at Red=1.4×107 from the experimental results. The high accurate flow nozzle developed can reduce this extrapolation error of the discharge coefficient to high Reynolds numbers by using the equations of discharge coefficients, which is determined as a function of Reynolds number and tap diameter based on the experimental results of four different diameter taps. The error of extrapolated discharge coefficient using the derived equations is estimated to be less than 0.1% at Red=1.4×107. The present results show that the throat tap flow nozzle developed is expected to work as a high accurate flowmeter even under the extrapolation of the discharge coefficient toward high Reynolds numbers.


2012 ◽  
Vol 43 (5) ◽  
pp. 589-613
Author(s):  
Vyacheslav Antonovich Bashkin ◽  
Ivan Vladimirovich Egorov ◽  
Ivan Valeryevich Ezhov ◽  
Sergey Vladimirovich Utyuzhnikov

1980 ◽  
Vol 101 (4) ◽  
pp. 721-735 ◽  
Author(s):  
Masaru Kiya ◽  
Hisataka Tamura ◽  
Mikio Arie

The frequency of vortex shedding from a circular cylinder in a uniform shear flow and the flow patterns around it were experimentally investigated. The Reynolds number Re, which was defined in terms of the cylinder diameter and the approaching velocity at its centre, ranged from 35 to 1500. The shear parameter, which is the transverse velocity gradient of the shear flow non-dimensionalized by the above two quantities, was varied from 0 to 0·25. The critical Reynolds number beyond which vortex shedding from the cylinder occurred was found to be higher than that for a uniform stream and increased approximately linearly with increasing shear parameter when it was larger than about 0·06. In the Reynolds-number range 43 < Re < 220, the vortex shedding disappeared for sufficiently large shear parameters. Moreover, in the Reynolds-number range 100 < Re < 1000, the Strouhal number increased as the shear parameter increased beyond about 0·1.


Sign in / Sign up

Export Citation Format

Share Document