Analysis of a Low Speed Flexible Flat Land Thrust Bearing

1990 ◽  
Vol 112 (4) ◽  
pp. 678-683
Author(s):  
M. Carpino

The problem of a flexible flat land thrust bearing is studied here. The bearing consists of a flexible circular plate running against a rigid flat surface. Point loads are applied to the plate at equally spaced locations causing deflection of the plate. The deflection of the plate creates the converging clearances necessary for hydrodynamic lubrication. The fluid film between the disk and the plate is treated as incompressible. Results are presented in terms of normalized variables enabling the design of a broad range of bearings based on this mechanism.

1981 ◽  
Vol 17 (7) ◽  
pp. 669-672
Author(s):  
Ya. M. Grigorenko ◽  
N. N. Kryukov ◽  
T. G. Akhalaya

2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Matteo Pelosi ◽  
Monika Ivantysynova

The piston/cylinder interface of swash plate–type axial piston machines represents one of the most critical design elements for this type of pump and motor. Oscillating pressures and inertia forces acting on the piston lead to its micro-motion, which generates an oscillating fluid film with a dynamically changing pressure distribution. Operating under oscillating high load conditions, the fluid film between the piston and cylinder has simultaneously to bear the external load and to seal the high pressure regions of the machine. The fluid film interface physical behavior is characterized by an elasto-hydrodynamic lubrication regime. Additionally, the piston reciprocating motion causes fluid film viscous shear, which contributes to a significant heat generation. Therefore, to fully comprehend the piston/cylinder interface fluid film behavior, the influences of heat transfer to the solid boundaries and the consequent solid boundaries’ thermal elastic deformation cannot be neglected. In fact, the mechanical bodies’ complex temperature distribution represents the boundary for nonisothermal fluid film flow calculations. Furthermore, the solids-induced thermal elastic deformation directly affects the fluid film thickness. To analyze the piston/cylinder interface behavior, considering the fluid-structure interaction and thermal problems, the authors developed a fully coupled simulation model. The algorithm couples different numerical domains and techniques to consider all the described physical phenomena. In this paper, the authors present in detail the computational approach implemented to study the heat transfer and thermal elastic deformation phenomena. Simulation results for the piston/cylinder interface of an existing hydrostatic unit are discussed, considering different operating conditions and focusing on the influence of the thermal aspect. Model validation is provided, comparing fluid film boundary temperature distribution predictions with measurements taken on a special test bench.


1959 ◽  
Vol 26 (1) ◽  
pp. 13-17
Author(s):  
G. N. Bycroft

Abstract The frequencies of free vibration of a thin, flexible, circular plate stuck to the surface of a massless elastic half-space are solved by an application of the Rayleigh-Ritz principle. The approximate fundamental frequency is considered in detail when the plate is clamped, free, or hinged at its periphery. The method of obtaining the higher frequencies, such as those involving nodal diameters, is indicated.


1982 ◽  
Vol 49 (3) ◽  
pp. 601-605 ◽  
Author(s):  
J. S. Burdess

The dynamics of a rigid rotor supported on a flexible circular plate is investigated and it is shown that the arrangement is capable of operating as a tuned free rotor gyroscope. The performance characteristics of the gyroscope are evaluated and the analysis shows that the steady displacment of the rotor may be used to measure either the angular velocity or angular displacement of the supporting casing. For both modes of operation the free motion and the response to a constant rate and a vibratory input is determined.


2020 ◽  
Vol 143 (6) ◽  
Author(s):  
J. C. Atwal ◽  
R. K. Pandey

Abstract This paper presents the performance behaviors (coefficient of friction, minimum film thickness, and pressure distributions) of a fluid film thrust bearing using a newly conceived micro-texture on pads. In the numerical investigation, the Reynolds equation has been discretized using the finite element formulation followed by the solution of algebraic equations employing the Fischer-Burmeister-Newton-Schur (FBNS) algorithm, which satisfies the mass-conservation phenomenon arising due to the commencement of cavitation in the lubricating film. The effects of parameters (micro-texture/pocket depth, circumferential/radial length of micro-texture and pocket, etc.) of new texture on the performance behaviors of the thrust bearing have been explored and presented herein for the range of input data. It has been found that the minimum film thickness has increased up to 48%, and the friction coefficient reduced up to 24% in comparison to conventional plain pad case.


Author(s):  
Saqib Naseer ◽  
Syed Adnan Qasim ◽  
Raja Amer Azim

Journal bearing plays a critical role in carrying the extensive transient hydrodynamic loads to prevent adhesive wear of crankshaft of a high-torque low-speed diesel engine. The nominal clearance between the shaft-pin and the bearing journal invites viscous shearing of the lubricant on the initiation of rotation at the time of low speed engine start up. Shear heating adversely affects the load carrying ability of the bearing by reducing its viscosity as a function of time. It invites physical contact and wear of bearing and the crankshaft compromising their designed life. In this work the 2-D Reynolds equation is used to model hydrodynamic lubrication phenomenon of crankshaft covering the steady state wedging and transient squeeze which are modeled under the lubricant flooding conditions. The viscous shear heating is modeled by solving energy equation encompassing 2-D convection and 1-D conduction phenomena. The lateral displacements are incorporated in the lubrication model to analyze the effects of secondary dynamics of crankshaft on viscous shearing and friction. The relationships between temperature, viscosity and density are defined to ascertain their effects on bearing lubrication at low engine speed. The numerical simulation results are analyzed for the complete 720-degree 4-stroke engine cycle at a low operating speed. The results show that viscous heating adversely affects the lubrication of journal bearing by significantly reducing the viscosity of lubricant film at low transient loads and speed. The study determines hydrodynamic pressures, temperature, density, viscosity and thermal conductivity of lubricant suitable to minimize the possibility of rupture and adhesive wear due to shear heating under the flooding conditions at a low initial engine speed. It will facilitate towards enhancing the life of crankshaft of a heavy-duty diesel engine.


Author(s):  
J. H. Shin ◽  
H. E. Kim ◽  
K. W. Kim

This application study of a swash-plate type axial piston pump was concerned about the hydrostatic lubrication characteristics of cylinder barrel and valve plate which are main rotating body and its opposite moving part respectively. A computer simulation was implemented to assess thrust bearing and mechanical sealing functions of the fluid film between cylinder barrel and valve plate. A new algorithm was developed to facilitate simultaneous calculations of dynamic cylinder pressure, 3 degree-of-freedom barrel motions considering inertia effect, and fluid film pressure assuming full fluid film lubrication regime. Using the simulation tool, force and moment balancing of cylinder barrel which is a key issue of piston pump design was analyzed. Time dependent fluid film pressure and thickness distributions for several given balance ratios were calculated. This analysis helps to decide appropriate balance ratio in the valve and cylinder barrel. Oil leakage flow and friction torque in the fluid film between cylinder barrel and valve plate were calculated as well and discussed in the viewpoint of energy loss. The results show that film thickness in plain surface is not high enough to bear the barrel and reduce power loss and that surface waviness which exists in actual sliding surfaces can have a positive effect on it. This simulation tool could also predict time dependent barrel motions due to simultaneous calculation algorithm. It has been known that cylinder barrel rotates with oscillation. Therefore average clearance, tilt angle, and azimuth angle were calculated for each time step and the results were discussed.


Sign in / Sign up

Export Citation Format

Share Document