Volume 1A, Symposia: Keynotes; Advances in Numerical Modeling for Turbomachinery Flow Optimization; Fluid Machinery; Industrial and Environmental Applications of Fluid Mechanics; Pumping Machinery
Latest Publications


TOTAL DOCUMENTS

84
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791858042

Author(s):  
Andreas Swienty ◽  
Evgenii Palamarchuk ◽  
Raja Abou Ackl ◽  
Paul Uwe Thamsen

The aim of this work is to investigate how a reduction of the noise emissions can be achieved by means of an irregular arrangement of the blades of the fan impeller and an additional blade skewing. For this purpose a fan impeller with a defined operating point is designed. Preliminary investigations have shown that a volumetric flow rate of 18 m3/h at a pressure of 200 Pa is required for cooling. Due to structural restrictions, only one axial impeller with a diameter of 68 mm can be used. The rotational speed of the electric motor is 10000 rpm. In a further step, the influences of the blade skewing and irregular arrangement of the blades are examined. These impellers are manufactured in a rapid prototyping process, which is a cost-effective and fast process. Thus, various variants can be examined to find the most suitable impeller. The study of the impellers is divided into two phases. Firstly, the fluid mechanical data of the impeller is measured. For this purpose, a chamber test stand is used to measure the characteristic curves of fan impellers. Thus, on the one hand, it can be examined whether the designed impeller reaches the operating point and, on the other hand, the influence of the noise reduction measures on the characteristic curves can also be evaluated. It is, of course, not desired that the noise reduction measures result in a deterioration of the pressure increase or in the volumetric flow rate. In the second phase, the noise generation of the impeller is measured in an installed state on an acoustic test stand. For this purpose, the impellers are installed in the electric motor and then acoustically examined in enveloping surface method according to DIN 45635. It can be seen that the sound load can be reduced by 5.6 dB by a sufficient design of the impeller compared to a reference impeller. The further measures taken, such as the irregular arrangement of the blades and the blade skewing, have shown a further improvement of 1.6 dB. The influence of the implemented measures on the characteristic curve lies in a small area. It is measured that the pressure increase has fallen due to the irregular arrangement of the blades and the blade skewing by 10 Pa with a constant remaining flow rate.


Author(s):  
Fu-qiang Chen ◽  
Zhi-xin Gao ◽  
Jin-yuan Qian ◽  
Zhi-jiang Jin

In this paper, a new high multi-stage pressure reducing valve (HMSPRV) is proposed. The main advantages include reducing noise and vibration, reducing energy consumption and dealing with complex conditions. As a new high pressure reducing valve, its flow characteristics need to be investigated. For that the valve opening has a great effect on steam flow, pressure reduction and energy consumption, thus different valve openings are taken as the research points to investigate the flow characteristics. The analysis is conducted from four aspects: pressure, velocity, temperature fields and energy consumption. The results show that valve opening has a great effect on flow characteristics. No matter for pressure, velocity or temperature field, the changing gradient mainly reflects at those throttling components for all valve openings. For energy consumption, in the study of turbulent dissipation rate, it can be found that the larger of valve opening, the larger of energy consumption. It can be concluded that the new high multi-stage pressure reducing valve works well under complex conditions. This study can provide technological support for achieving pressure regulation, and benefit the further research work on energy saving and multi-stage design of pressure reducing devices.


Author(s):  
Carl E. Rathmann

For well over 150 years now, theoreticians and practitioners have been developing and teaching students easily visualized models of fluid behavior that distinguish between the laminar and turbulent fluid regimes. Because of an emphasis on applications, perhaps insufficient attention has been paid to actually understanding the mechanisms by which fluids transition between these regimes. Summarized in this paper is the product of four decades of research into the sources of these mechanisms, at least one of which is a direct consequence of the non-linear terms of the Navier-Stokes equation. A scheme utilizing chaotic dynamic effects that become dominant only for sufficiently high Reynolds numbers is explored. This paper is designed to be of interest to faculty in the engineering, chemistry, physics, biology and mathematics disciplines as well as to practitioners in these and related applications.


Author(s):  
Jiachun Liu ◽  
Jian Zhang ◽  
Xiaodong Yu ◽  
Hui Xie

In this paper, on the basis of the state space method and actual system arrangement, the small fluctuation mathematical model of the water conveyance system with air cushion surge chamber (ACSC) was established. According to the basic equations of ACSC, the ideal gas state equation and the units constant output equation, the formula describing the stable cross-section area (SCSA) of ACSC was deduced, and the small fluctuation stability (SFS) of water conveyance system was analyzed. The corresponding results showed that the air chamber constant had a great influence on the SCSA of ACSC. When the air chamber constant became larger, the quality of the system small fluctuation went worse. The higher upstream water level and the lower initial air chamber height will lead to a smaller initial air chamber constant of ACSC, which is destructive for the stability of the system small fluctuation; As long as the equivalent air quality and air chamber volume are constant, good quality system small fluctuations could be obtained when the initial air chamber height is small and the area of ACSC is large.


Author(s):  
Xi Yang ◽  
Dong-hai Jin ◽  
Xing-min Gui

Pipe diffuser draws more attentions these years as the stage pressure ratio and loads grow, since it is known that the pipe diffuser has a superior performance to the traditional vane diffuser as the diffuser inlet flow field is transonic or supersonic. Generally speaking, when the pressure ratio is high enough to give rise to the emergence of a critical cross-section, it would usually be in the diffuser, closing to the leading edge other than in the impeller. Therefore, the diffuser would have a significant impact on stage choke margin and its performance while be difficult to design and to match the impeller with satisfaction. To address the problem, a preliminary geometry design method for pipe diffuser is presented in this paper. In this paper, the performance and flow field analysis are based on numerical simulation carried out by Numeca, a commercial simulation software. For verified the calculated results′ reliability and grid independence, corresponding calculations and comparisons are conducted and discussed. Then, the performance of stage with pipe diffuser is compared with the stage with vane diffuser. Next, the specific effects of incidence on the performance and flow field are analyzed and discussed respectively. At last, an optimized aerodynamic structure of pipe diffuser is presented. As shown in the CFD results, the stage peak isentropic efficiency can reach up to 83.65% with the stage total pressure ratio slightly increased from 6.50 to 6.78, which means 4.29% of isentropic efficiency was raised by substituting the pipe diffuser for the vane diffuser.


Author(s):  
Angela Gerlach ◽  
Dorian Perlitz ◽  
Flemming Lykholt-Ustrup ◽  
Christian Brix Jacobsen ◽  
Paul Uwe Thamsen

This paper analyzes the clogging behavior of a vortex pump with different impeller designs. The influence of blade outlet angle, blade number, and impeller diameter were tested. Non-woven textiles in different concentrations served as the clogging material. The results suggest that a smaller outlet blade angle, a higher blade number, and a larger impeller diameter allow pumping more textiles. Impellers that were capable of pumping more textiles, however, were less efficient. Overall, pumping textiles causes efficiency losses. However, this could not be only related to increased power consumption. Flow rates under clogging operation were close to the flow rates under clear water operation irrespective of the amount of clogging material and the impellers design. Further, in all tests clogging material accumulated at the suction mouth in the casing.


Author(s):  
Takaya Onishi ◽  
H. Sato ◽  
M. Hayakawa ◽  
Y. Kawata

Propeller fans are required not only to have high performance but also to be extremely quiet. The internal flow field of ventilation propeller fans is even more complicated because they usually have a very peculiar configuration with protruding blades upstream. Thus, many kinds of internal vortices yield which cause noise and their cause and countermeasures are needed to be clarified. The purposes of this paper are to visualize the internal flow of the propeller fan from the static and rotating frame of reference. The internal flow visualization measured from the static frame gives approximately the scale of the tip vortex. The visualization from the rotating coordinate system yields a better understanding of the flow phenomena occurring at the specific blade. The experiment is implemented by using a small camera mounted on the shaft of the fan and rotated it to capture the behavior of the vortices using a laser light sheet to irradiate the blade surface. Hence, the flow field of the specific blade could be understood to some extent. The visualized results are compared with the CFD results and these results show a similar tendency about the generation point and developing process of the tip vortex. In addition, it is found that the noise measurement result is relevant to the effect of tip vortex from the visualization result.


Author(s):  
Chaoyue Wang ◽  
Fujun Wang ◽  
Zhichao Zou

In engineering applications, design and manufacture of double-suction impeller are on the basis of single-suction impeller. However, there is a lack of clear view on the differences of hydraulic performance between single-suction centrifugal pump and double-suction centrifugal pump which has the same blades. In this paper, a single-suction centrifugal pump and double-suction centrifugal pump with the same blades are investigated respectively, and their hydraulic performances have been compared in terms of external characteristics, flow pattern, pressure fluctuation and cavitation characteristics. In operating range of 0.6Q0∼1.1Q0, results show that the efficiency of double-suction pump is 4.14% higher than that of single-suction pump stably, and the head of single suction pump is 3.5% higher than that of double-suction pump stably. Single-suction impeller and double-suction impeller have similar jet-wake structure in impeller outlet, but the amplitude of velocity of single suction impeller changes more sharply. In the vicinity of rated condition, the amplitude of pressure fluctuation of double suction pump is about half that of the single suction pump, and the cavitation performance of double suction pump and single suction pump are basically the same. These quantitative results show that pressure fluctuation characteristics and cavitation performance of single-suction pump and double-suction pump with the same blades have little difference in the vicinity of rated condition. Compared with single-suction pump, the head of double-suction pump has declined, while the efficiency has improved remarkably. The research results have significant guidance on excavating the potential of excellent hydraulic models and guiding the design of double-inlet multistage double-suction centrifugal pump.


Author(s):  
Massimo Rundo ◽  
Giorgio Altare

The paper describes the modelling and the experimental tests of a variable displacement vane pump for engine lubrication. The approach used for the simulation has involved 3D commercial tools for tuning a 0D customized model implemented in the LMS Amesim® environment. Different leakage paths are considered and the axial clearances are variable to take into account the deformation of the pump cover, calculated through a finite element analysis with ANSYS®. The vane tip clearances are calculated as function of the dynamic equilibrium equation of the vanes. The displacement control takes into account the internal forces on the stator due to the pressure in all variable chambers and to the contact force exerted by the vanes. The discharge coefficients in the resistive components have been tuned by means of a complete 3D transient model of the pump built with PumpLinx®. The tuned 0D model has been proved to be reliable for the determination of the steady-state flow-speed and flow-pressure curves, with a correct estimation of the internal leakages and of the pressure imposed by the displacement control. The pump has been also tested using a simplified circuit and a fair agreement has been found in the evaluation of the delivery pressure ripple.


Author(s):  
Ning Huang ◽  
Zhenlin Li ◽  
Shiyao Li ◽  
Ning Zhang ◽  
Zhihui Dong

With the development of offshore oil and gas industry, LNG turbo expanders are widely used in Floating Liquid Natural Gas equipment (FLNG) for natural gas transportation. The performance characteristic of the turbo expander is significant affected by the rolling motion caused by the ocean conditions. As an important part of expander, the labyrinth seal is directly related to the safety of the expander, so it is necessary to study the performance characteristic of labyrinth seal under rolling motion. In this paper, CFD is used to simulate the internal flow field of labyrinth seals under different rolling periods and sloshing amplitudes conditions. The distribution of the pressure drop is obtained, and the influence of rolling motion on different labyrinth seal radial clearances and cavity depths are discussed. The results indicate that variation periods of the pressure drop are consistent with the rolling periods, and the larger the rolling amplitude is, the larger pressure drop fluctuation can be observed. Additionally, the fluctuation characteristic is significantly affected by gap widths and cavity depths.


Sign in / Sign up

Export Citation Format

Share Document