Unified Uncertainty Analysis by the First Order Reliability Method

2008 ◽  
Vol 130 (9) ◽  
Author(s):  
Xiaoping Du

Two types of uncertainty exist in engineering. Aleatory uncertainty comes from inherent variations while epistemic uncertainty derives from ignorance or incomplete information. The former is usually modeled by the probability theory and has been widely researched. The latter can be modeled by the probability theory or nonprobability theories and is much more difficult to deal with. In this work, the effects of both types of uncertainty are quantified with belief and plausibility measures (lower and upper probabilities) in the context of the evidence theory. Input parameters with aleatory uncertainty are modeled with probability distributions by the probability theory. Input parameters with epistemic uncertainty are modeled with basic probability assignments by the evidence theory. A computational method is developed to compute belief and plausibility measures for black-box performance functions. The proposed method involves the nested probabilistic analysis and interval analysis. To handle black-box functions, we employ the first order reliability method for probabilistic analysis and nonlinear optimization for interval analysis. Two example problems are presented to demonstrate the proposed method.

Author(s):  
Xiaoping Du

Both aleatory and epistemic uncertainties exist in engineering applications. Aleatory uncertainty (objective or stochastic uncertainty) describes the inherent variation associated with a physical system or environment. Epistemic uncertainty, on the other hand, is derived from some level of ignorance or incomplete information about a physical system or environment. Aleatory uncertainty associated with parameters is usually modeled by probability theory and has been widely researched and applied by industry, academia, and government. The study of epistemic uncertainty in engineering has recently started. The feasibility of the unified uncertainty analysis that deals with both types of uncertainties is investigated in this paper. The input parameters with aleatory uncertainty are modeled with probability distributions by probability theory, and the input parameters with epistemic uncertainty are modeled with basic probability assignment by evidence theory. The effect of the mixture of both aleatory and epistemic uncertainties on the model output is modeled with belief and plausibility measures (or the lower and upper probability bounds). It is shown that the calculation of belief measure or plausibility measure can be converted to the calculation of the minimum or maximum probability of failure over each of the mutually exclusive subsets of the input parameters with epistemic uncertainty. A First Order Reliability Method (FORM) based algorithm is proposed to conduct the unified uncertainty analysis. Two examples are given for the demonstration. Future research directions are derived from the discussions in this paper.


2012 ◽  
Vol 616-618 ◽  
pp. 1988-1992
Author(s):  
Shun Qi Yang ◽  
Bo Huang ◽  
Liang Ping Mao

Planetary gear reducer is one commonly gearbox used in ROV thruster. In optimization design of planetary gear reducer of ROV thruster, a lot of uncertainties affect the reliability of gear reducer. In this paper, evidence-based design optimization (EBDO) is proposed to handle the planetary gear reducer design under two types uncertainties and first-order reliability method (FORM) is used to calculate reliability of the planetary gear reducer performance functions. Finally, an engineering example is used to illustrate the proposed model to design planetary gear reducer of ROV thruster.


Author(s):  
Zhenzhong Chen ◽  
Zihao Wu ◽  
Xiaoke Li ◽  
Ge Chen ◽  
Guangfeng Chen ◽  
...  

The first-order reliability method is widely used for structural reliability analysis; however, its accuracy would become worse for nonlinear problems. This paper proposes the accuracy analysis method of the first-order reliability method, which considers the worst cases when using the first-order reliability method and gives the possible value range of the probability of safety. The accuracy analysis method can evaluate the reliability level of the first-order reliability method when the failure surfaces are nonlinear. The calculation formula for the possible value range of the probability of safety is proposed, and its trend as the dimensions and reliability rise is also discussed in this paper. A numerical example and a honeycomb crashworthiness design are presented to validate the accuracy of the first-order reliability method, and the results show that they are located within the possible value range proposed in this paper.


Author(s):  
Curtis Armstrong ◽  
Christopher Chin ◽  
Irene Penesis ◽  
Yuriy Drobyshevski

A comparative study of two methods for the generation of the environmental contours is presented investigating the sensitivity of the predicted extreme vessel responses to the type of the contour lines. Two approaches for the generation of environmental contours of the significant wave height and peak period are compared: the Inverse First Order Reliability Method (IFORM) and Constant Probability Density (CPD) approach. Case studies include several global responses of a ship-shaped weather-vaning vessel and a semisubmersible platform. The case studies reveal that the differences between the IFORM and CPD contours are more pronounced in the range of long wave periods. Vessel responses which are less sensitive to long wave periods exhibit less difference (less than 1.0%) in their maximum values between the two types of contours. In contrast, responses which are sensitive to long wave periods show significantly larger differences of up to 7.0%. Uncertainties also exist in the predicted extreme responses where the environmental contour and the response isoline behave tangentially. Differences between the extreme responses produced by the two contours generally decrease with an increase in return period; however exceptions exist due to the tangential behaviour. It is advised that these sensitivities should be taken into consideration when the environmental contours are used in the design.


2018 ◽  
Vol 45 ◽  
pp. 00096
Author(s):  
Arkadiusz Szot

The article concerns aspects of safety in the process of designing continuous polymer liners used to strengthen and seal sewers and drains. The issues of safety coefficients, the variability of basic loadbearing parameters of liners and the problem of sensitivity of analytical solutions describing load-bearing capacity are discussed. The currently used magnitude of safety factors has been verified. The results of an examination on the safety index of liners for strengthening sewers has been presented in the paper. The necessity for the verification of current concepts of liner safety normalisation was herein addressed. A postulation to abandon the analogy of liners for newly constructed pipes was formulated. Calculations using the Hasofer-Lind safety index (First Order Reliability Method) were performed in some cases. A verification and evaluation of the global safety factor for sewer liners were herein carried out.


Sign in / Sign up

Export Citation Format

Share Document