Differential Quadrature Method in Computational Mechanics: A Review

1996 ◽  
Vol 49 (1) ◽  
pp. 1-28 ◽  
Author(s):  
Charles W. Bert ◽  
Moinuddin Malik

The differential quadrature method is a numerical solution technique for initial and/or boundary problems. It was developed by the late Richard Bellman and his associates in the early 70s and, since then, the technique has been successfully employed in a variety of problems in engineering and physical sciences. The method has been projected by its proponents as a potential alternative to the conventional numerical solution techniques such as the finite difference and finite element methods. This paper presents a state-of-the-art review of the differential quadrature method, which should be of general interest to the computational mechanics community.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
B. Pekmen ◽  
M. Tezer-Sezgin

Differential quadrature method (DQM) is proposed for the numerical solution of one- and two-space dimensional hyperbolic telegraph equation subject to appropriate initial and boundary conditions. Both polynomial-based differential quadrature (PDQ) and Fourier-based differential quadrature (FDQ) are used in space directions while PDQ is made use of in time direction. Numerical solution is obtained by using Gauss-Chebyshev-Lobatto grid points in space intervals and equally spaced and/or GCL grid points for the time interval. DQM in time direction gives the solution directly at a required time level or steady state without the need of iteration. DQM also has the advantage of giving quite good accuracy with considerably small number of discretization points both in space and time direction.



Author(s):  
Murat Tuna ◽  
Halit S. Turkmen

The effect of blast load on the plate and shell structures has an important role on design decision. Blast load experiments are usually difficult and expensive. Therefore, numerical studies have been done on the response of blast loaded structures. However, because of time dependency of the nature of the problem, numerical solutions take long time and need heavy computational effort. The differential quadrature method (DQM) is a numerical solution technique for the rapid solution of linear and non-linear partial differential equations. It has been successfully applied to many engineering problems. The method has especially found application widely in structural analysis such as static and free vibration analysis of beams and plates. The capability of the method to produce highly accurate solutions with minimal computational efforts makes it of current interest. In this paper, the dynamic behavior of isotropic and laminated composite plates under air blast load has been investigated using the differential quadrature method. The results are compared to the numerical and experimental results found in the literature.



2021 ◽  
Vol 2 (1) ◽  
pp. 119-130
Author(s):  
‎Zahra‎‎ ‎ sarvari ◽  
Mojtaba Ranjbar ◽  
Shahram Rezapour ◽  
◽  
◽  
...  


Sign in / Sign up

Export Citation Format

Share Document