Geometric Design Investigation of Single Screw Compressor Rotor Grooves Produced by Cylindrical Milling

2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Weifeng Wu ◽  
Quanke Feng ◽  
Xiaoling Yu

Cylindrical milling of a screw rotor groove in a single screw compressor has higher machining efficiency than turning. However, the screw groove bottom produced by the flat end of the milling cutter fails to mesh hermetically with the flat tooth tip due to the oversized clearance between them. The clearance forms two leakage paths leading to a compressed gas leakage. The shape of the path is roughly the same as that of two parallel oblate divergent nozzles in an inverse orientation. A mathematical simulation is presented for the surface profile of the screw groove bottom for a single screw compressor generated using several cylindrical milling cutters. The results contribute to improving the design of the meshing pairs in the single screw compressor.

Author(s):  
S-C Yang

In this paper, a method is proposed for determining a basic profile of a cc-type single-screw compressor including the gate rotor and the screw rotor. The cc-type has a cylindrical screw and two cylindrical gate rotors. Based on this method, a mathematical model of the meshing principles of a cc-type screw rotor meshed with a gate rotor, that has either straight edge teeth or conical teeth, is presented. The inverse envelope concept is used to determine the cutting-edge curve of a gate rotor. Based on this concept, the required cutter for machining a cc-type screw rotor can be obtained by the envelope of a one-parameter family. The obtained screw rotor is an envelope to the family of the gate rotor's surfaces. The obtained envelope becomes the generating surface. The inverse envelope can be used to obtain the envelope to the family of generating surfaces. Then the profile of a gate rotor cutting-edge curve can be easily obtained. The surface analysis including contact lines is shown for the design and manufacture of a screw compressor. As an example, the cc-type single-screw compressor with a compressor ratio of 11:6 was determined with the aid of the proposed mathematical model. Using rapid prototyping (RP) and manufacturing technology, a cc-type single-screw rotor with a gate rotor was designed. The RP primitives provide an actual full-size physical model that can be analysed and used for further development. Results from these mathematical models should have applications in the design of cc-type single-screw compressors.


2011 ◽  
Vol 314-316 ◽  
pp. 543-546
Author(s):  
Xing Wei Sun ◽  
Guang Lv ◽  
Ke Wang

The key components of the single screw compressor are rotor screw and two star-wheels which are symmetrical arrangement. The rotor screw and two star-wheels have composed a special spatial meshing pair. The high meshed precision is the guarantee of its excellent performance. In this paper, we will study the milling technology of screw milling cutter to the rotor screw, and establish the finite element model of the cutter, and analyze the cutter’s stress situation during the milling process, make the cutting parameters of the screw optimization, In this paper, we will also study the influence of the Milling depth and cutting width to tool in displacement and stress, in order to provide a theoretical reference of selecting of appropriate cutting parameters ,improving of processing quality and reducing wear of the tool.


Author(s):  
S-C Yang

This paper presents a method for determining the basic profile of a single-screw compressor including a gate rotor and a screw rotor. The inverse envelope concept for determining the cutting-edge curve of the gate rotor is presented. Based on this concept, the required cutter for machining the screw rotor can be obtained by an envelope of the one-parameter family of obtained screw rotors. The obtained screw rotor is an envelope of the family of gate rotor surfaces. Let the obtained envelope of the one-parameter family of gate rotor surfaces become the generating surface. The inverse envelope can be used to obtain the envelope of the family of generating surfaces. Then, the profile of the gate rotor with the cutting-edge curve can be easily obtained. The proposed method shows that the gate rotor and the screw rotor are engaged along the contact line at every instant. This is essential to reduce the effect of leakage on compressor performance. In this paper, a mathematical model of the meshing principle of the screw rotor with the gate rotor is established. As an example, the single-screw compressor for a compressor ratio of 11:6 is determined with the aid of the proposed mathematical model. Results from these mathematical models should have applications in the design of single-screw compressors.


2013 ◽  
Vol 774-776 ◽  
pp. 1107-1111
Author(s):  
Yong Qiang Zhao ◽  
Sheng Dun Zhao ◽  
Hong Ling Hou

With the accuracy improvement of twin-screw compressor rotor machining, higher requirement of crew rotor grinded equipment and grinding process is put forward. Based the theory of screw grinding and CNC forming grinding wheel dress technology, the relationship between machine working parameters, CNC grinding wheel dressing parameters and screw rotor grinded process parameters are investigated, and the relationship between CNC grinding wheel dressing parameters and the screw rotor grinded process parameters is established, and its formulas are presented to describe the distances between grinding wheel axis and screw rotor axis. Through these formulas, the CNC wheel dressing program could be designed easily, the performance and efficiency of machine would be improved, and especially the machining quality of screw rotor would be enhanced and becomes more stability.


2021 ◽  
Vol 1180 (1) ◽  
pp. 012011
Author(s):  
S Y Wang ◽  
Z L Wang ◽  
H W Shi ◽  
Z M Wang ◽  
M M Hao ◽  
...  

2007 ◽  
Vol 31 (2) ◽  
pp. 219-234 ◽  
Author(s):  
Yang Shyue-Cheng ◽  
Tsang-Lang Liang

A geometric model and a mathematical model of a PP-type single screw rotor with planar gate rotor are derived from the gate-rotor generation process and gear theory. The teeth of gate rotor are planar. Based on the inverse envelope concept, the cutter required for machining the single screw rotor can be obtained using an inverse envelope of a one-parameter family of screw surfaces. The surface of the proposed screw rotor is analyzed using the developed mathematical model. A surface analysis, including stress analysis, of the design and manufacture of the screw compressor is presented. Finally, a numerical example demonstrates the geometric model of the PP-type single screw rotor with a compression ratio of 11:6.


2014 ◽  
Vol 39 (5) ◽  
pp. 4221-4229 ◽  
Author(s):  
Shyue-Cheng Yang ◽  
Tsun-Hui Huang ◽  
Chia-Hung Lai

Sign in / Sign up

Export Citation Format

Share Document