Plastic Stress Intensity Factors in Steady Crack Growth

1987 ◽  
Vol 54 (2) ◽  
pp. 379-387 ◽  
Author(s):  
P. Ponte Castan˜eda

The asymptotic stress and deformation fields of a crack propagating steadily and quasi-statically into an elastic-plastic material, characterized by J2-flow theory with linear strain-hardening, were first determined by Amazigo and Hutchinson (1977) for the cases of mode III and mode I (plane strain and plane stress). Their solutions were approximate in that they neglected the possibility of plastic reloading on the crack faces. This effect was taken into account by Ponte Castan˜eda (1987b), who also introduced a new formulation for the (eigenvalue) problem in terms of a system of first order O.D.E.’s in the angular variations of the stress and velocity components. The strength of the power-type singularity, serving as the eigenvalue, and the angular variations of the field were determined as functions of the hardening parameter. The above analysis, however, does not determine the amplitude factor of these near-tip asymptotic fields, or plastic stress intensity factor. In this work, a simple, approximate technique based on direct application of a variational statement of compatibility is developed under the assumption of small scale yielding. A trial function for the stress function of the problem, that makes use of the asymptotic information in the near-tip and far-field limits, is postulated. Such a trial function depends on arbitrary parameters that measure the intensity of the near-tip fields and other global properties of the solution. Application of the variational statement then yields optimal values for these parameters, and in particular determines the plastic stress intensity factor, thus completing the knowledge of the near-tip asymptotic fields. The results obtained by this novel method are compared to available finite element results.

1982 ◽  
Vol 49 (4) ◽  
pp. 754-760 ◽  
Author(s):  
P. S. Theocaris ◽  
C. I. Razem

The KIII-stress intensity factor in an edge-cracked plate submitted to antiplane shear may be evaluated by the reflected caustic created around the crack tip, provided that a purely elastic behavior exists at the crack tip [1]. For a work-hardening, elastic-plastic material, when stresses at the vicinity of the crack tip exceed the yield limit of the material, the new shape of caustic differs substantially from the corresponding shape of the elastic solution. In this paper the shape and size of the caustics created at the tip of the crack, when small-scale yielding is established in the vicinity of the crack tip, were studied, based on a closed-form solution introduced by Rice [2]. The plastic stress intensity factor may be evaluated from the dimensions of the plastic caustic. Experimental evidence with cracked plates made of opaque materials, like steel, corroborated the results of the theory.


1991 ◽  
Vol 58 (4) ◽  
pp. 1107-1108 ◽  
Author(s):  
J. Weertman

The crack-tip shielding stress intensity factor L, for the mode III crack in a work-hardening solid is equal to L = - K, where K is the applied stress intensity factor. That is, the crack tip is perfectly shielded. This result is shown two ways: from the dislocation shielding and from the dislocation crack extension force.


Author(s):  
A. Vaziri ◽  
H. Nayeb-Hashemi

Turbine-generator shafts are often subjected to a complex transient torsional loading. Such transient torques may initiate and propagate a circumferential crack in the shafts. Mode III crack growth in turbo-generator shafts often results in a fracture surface morphology resembling a factory roof. The interactions of the mutual fracture surfaces result in a pressure, and a frictional stress field between fracture surfaces when the shaft is subjected to torsion. This interaction reduces the effective Mode III stress intensity factor. The effective stress intensity factor in circumferentially cracked round shafts is evaluated for a wide range of applied torsional loadings by considering a pressure distribution in the mating fracture surfaces. The pressure between fracture surfaces results from climbing the rought surfaces respect to each other. The pressure profile not only depends on the fracture surface roughness (height and width (wavelength) of the peak and valleys), but also depends on the magnitude of the applied Mode III stress intensity factor. The results show that the asperity interactions significantly reduce the effective Mode III stress intensity factor. However, the crack surfaces interaction diminishes beyond a critical applied Mode III stress intensity factor. The critical stress intensity factor depends on the asperities height and wavelength. The results of these analyses are used to find the effective stress intensity factor in various Mode III fatigue crack growth experiments. The results show that Mode III crack growth rate is related to the effective stress intensity factor in a form of the Paris law.


2000 ◽  
Vol 66 (645) ◽  
pp. 1039-1045 ◽  
Author(s):  
Kuniharu USHIJIMA ◽  
Dai-Heng CHEN ◽  
Naoto KITTE

2003 ◽  
Vol 243-244 ◽  
pp. 303-308
Author(s):  
Kuniharu Ushijima ◽  
Dai Heng Chen ◽  
Naoto Kitte

Sign in / Sign up

Export Citation Format

Share Document