Effect of Tensile-Mean-Strain on Plastic Strain Energy and Cyclic Response

1985 ◽  
Vol 107 (2) ◽  
pp. 119-125 ◽  
Author(s):  
F. Ellyin

Tests have been conducted to determine the effect of tensile-mean-strain on cyclic properties, low cycle fatigue, and total absorbed plastic strain energy to failure of ASTM A-516 Grade 70 carbon low alloy steel. Stable hysteresis loops at half-life are presented for different strain controlled tests. The cyclic properties were determined by a least squares fit technique. The results of tensile-mean-strain are compared with fully-reversed fatigue tests. The absorbed plastic strain energy per cycle was measured and compared with a proposed relationship for non-Masing material behavior. A relationship of the form Wf=KNfα is found to be a good representation of the data. It is observed that the material tends toward a steady-state condition independent of the level of the mean strain provided the fatigue life is greater than one thousand cycles.

1965 ◽  
Vol 87 (2) ◽  
pp. 275-289 ◽  
Author(s):  
JoDean Morrow ◽  
F. R. Tuler

Completely reversed axial fatigue results are reported for Waspaloy and Inconel 713C at room temperature. Fatigue strength and ductility are evaluated using power functions of the fatigue life. The exponents and coefficients of these two equations are looked upon as four fatigue properties of the material. They appear in the equations which are developed to relate cyclic stress, plastic strain, total strain, plastic strain energy per cycle, total plastic strain energy to fracture, and fatigue life. These equations and the four fatigue properties permit the evaluation of the relative fatigue resistance of various metals at different fatigue lives when subjected to strain, stress, or plastic strain energy cycling. The “best” selection of material to resist fatigue is found to depend on the type of cycling and the desired life. At room temperature, the wrought Waspaloy is found to be more fatigue resistant than the cast Inconel 713C, particularly in resisting strain or plastic strain energy cycling in the low cycle fatigue region. For longer lives the difference in fatigue resistance between the two diminishes, especially for stress cycling. It is believed that the method of fatigue evaluation used here is generally applicable to the engineering problem of material selection to resist fatigue, and should in some cases replace methods based on conventional rotating bending fatigue tests which only evaluate the fatigue strength at long lives.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2372
Author(s):  
Yifeng Hu ◽  
Junping Shi ◽  
Xiaoshan Cao ◽  
Jinju Zhi

The accumulated plastic strain energy density at a dangerous point is studied to estimate the low cycle fatigue life that is composed of fatigue initiation life and fatigue crack propagation life. The modified Ramberg–Osgood constitutive relation is applied to characterize the stress–strain relationship of the strain-hardening material. The plastic strain energy density under uni-axial tension and cyclic load are derived, which are used as threshold and reference values, respectively. Then, a framework to assess the lives of fatigue initiation and fatigue crack propagation by accumulated plastic strain energy density is proposed. Finally, this method is applied to two types of aluminum alloy, LC9 and LY12 for low-cycle fatigue, and agreed well with the experiments.


2005 ◽  
Vol 297-300 ◽  
pp. 2477-2482 ◽  
Author(s):  
Seong Gu Hong ◽  
Keum Oh Lee ◽  
Jae Yong Lim ◽  
Soon Bok Lee

Low-cycle fatigue tests were carried out in air in a wide temperature range from room temperature to 650oC to investigate the role of temperature on the low-cycle fatigue behavior of two types of stainless steels, cold-worked (CW) 316L austenitic stainless steel and 429 EM ferritic stainless steel. CW 316L stainless steel underwent additional hardening at room temperature and in 250-600oC: plasticity-induced martensite transformation at room temperature and dynamic strain aging in 250-600oC. As for 429 EM stainless steel, it underwent remarkable hardening in 200-400oC due to dynamic strain aging, resulting in a continuous increase in cyclic peak stress until failure. Three fatigue parameters, such as stress amplitude, plastic strain amplitude and plastic strain energy density, were evaluated. The results revealed that plastic strain energy density is nearly invariant through a whole life and, thus, recommended as a proper fatigue parameter for cyclically non-stabilized materials.


1997 ◽  
Vol 13 (2) ◽  
pp. 191-209 ◽  
Author(s):  
Y. H. Chai ◽  
K. M. Romstad

Although the potential for cumulative damage of structures during long duration earthquakes is generally recognized, most design codes do not explicitly takes into account the damage potential of such events. In this paper, a strain-based low-cycle fatigue model commonly used for the prediction of fatigue life in metals is adapted for cumulative damage assessment of structures under seismic conditions. By defining the number of load cycles in terms of the total plastic strain energy dissipated by the structure, the model is presented in a form capable of predicting the plastic strain energy capacity of the structure at the ultimate limit state. The plastic strain energy is expected to decrease rapidly with increased displacement in the small displacement range and to decrease gradually in a near linear manner with increased displacement in the large displacement range. The model is shown to calibrate reasonably well with small-scale aluminum cantilever specimens tested under large-amplitude reversed cyclic loading. At the ultimate limit state, the modified Park and Ang damage model may be considered as a linear approximation to the low-cycle fatigue model in the large displacement range.


2011 ◽  
Vol 194-196 ◽  
pp. 1210-1216
Author(s):  
Mou Sheng Song ◽  
Mao Wu Ran

In this paper, the problem of plastic strain energy density as a evaluation of low-cycle fatigue (LCF) properties for A356 alloys with various Ti content and Ti-addition methods is considered. The experimental results reveal that it is not the Ti-addition methods but the Ti content that has played an important role in influencing on the plastic strain energy density, thus on the LCF life. Whether for the electrolytic A356 alloys or for the melted A356 alloys, the alloys with 0.1% Ti content can consume higher cyclic plastic strain energy during the cyclic deformation compared with the alloys with 0.14% Ti content due to the better plasticity, giving rise to a better fatigue resistance and a longer LCF life. Because of the different macro or micro deformation mechanism, the fracture surface of electrolytic A356 alloy exhibits the diverse microstructural morphologies under the various strain amplitude.


Author(s):  
Ritwik Bandyopadhyay ◽  
Veerappan Prithivirajan ◽  
Alonso D. Peralta ◽  
Michael D. Sangid

In the present work, we postulate that a critical value of the stored plastic strain energy density (SPSED) is associated with fatigue failure in metals and is independent of the applied load. Unlike the classical approach of estimating the (homogenized) SPSED as the cumulative area enclosed within the macroscopic stress–strain hysteresis loops, we use crystal plasticity finite element simulations to compute the (local) SPSED at each material point within polycrystalline aggregates of a nickel-based superalloy. A Bayesian inference method is used to calibrate the critical SPSED, which is subsequently used to predict fatigue lives at nine different strain ranges, including strain ratios of 0.05 and −1, using nine statistically equivalent microstructures. For each strain range, the predicted lives from all simulated microstructures follow a lognormal distribution. Moreover, for a given strain ratio, the predicted scatter is seen to be increasing with decreasing strain amplitude; this is indicative of the scatter observed in the fatigue experiments. Finally, the lognormal mean lives at each strain range are in good agreement with the experimental evidence. Since the critical SPSED captures the experimental data with reasonable accuracy across various loading regimes, it is hypothesized to be a material property and sufficient to predict the fatigue life.


Sign in / Sign up

Export Citation Format

Share Document