Experimental Investigation on the Proper Fatigue Parameter of Cyclically Non-Stabilized Materials

2005 ◽  
Vol 297-300 ◽  
pp. 2477-2482 ◽  
Author(s):  
Seong Gu Hong ◽  
Keum Oh Lee ◽  
Jae Yong Lim ◽  
Soon Bok Lee

Low-cycle fatigue tests were carried out in air in a wide temperature range from room temperature to 650oC to investigate the role of temperature on the low-cycle fatigue behavior of two types of stainless steels, cold-worked (CW) 316L austenitic stainless steel and 429 EM ferritic stainless steel. CW 316L stainless steel underwent additional hardening at room temperature and in 250-600oC: plasticity-induced martensite transformation at room temperature and dynamic strain aging in 250-600oC. As for 429 EM stainless steel, it underwent remarkable hardening in 200-400oC due to dynamic strain aging, resulting in a continuous increase in cyclic peak stress until failure. Three fatigue parameters, such as stress amplitude, plastic strain amplitude and plastic strain energy density, were evaluated. The results revealed that plastic strain energy density is nearly invariant through a whole life and, thus, recommended as a proper fatigue parameter for cyclically non-stabilized materials.

1965 ◽  
Vol 87 (2) ◽  
pp. 275-289 ◽  
Author(s):  
JoDean Morrow ◽  
F. R. Tuler

Completely reversed axial fatigue results are reported for Waspaloy and Inconel 713C at room temperature. Fatigue strength and ductility are evaluated using power functions of the fatigue life. The exponents and coefficients of these two equations are looked upon as four fatigue properties of the material. They appear in the equations which are developed to relate cyclic stress, plastic strain, total strain, plastic strain energy per cycle, total plastic strain energy to fracture, and fatigue life. These equations and the four fatigue properties permit the evaluation of the relative fatigue resistance of various metals at different fatigue lives when subjected to strain, stress, or plastic strain energy cycling. The “best” selection of material to resist fatigue is found to depend on the type of cycling and the desired life. At room temperature, the wrought Waspaloy is found to be more fatigue resistant than the cast Inconel 713C, particularly in resisting strain or plastic strain energy cycling in the low cycle fatigue region. For longer lives the difference in fatigue resistance between the two diminishes, especially for stress cycling. It is believed that the method of fatigue evaluation used here is generally applicable to the engineering problem of material selection to resist fatigue, and should in some cases replace methods based on conventional rotating bending fatigue tests which only evaluate the fatigue strength at long lives.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2372
Author(s):  
Yifeng Hu ◽  
Junping Shi ◽  
Xiaoshan Cao ◽  
Jinju Zhi

The accumulated plastic strain energy density at a dangerous point is studied to estimate the low cycle fatigue life that is composed of fatigue initiation life and fatigue crack propagation life. The modified Ramberg–Osgood constitutive relation is applied to characterize the stress–strain relationship of the strain-hardening material. The plastic strain energy density under uni-axial tension and cyclic load are derived, which are used as threshold and reference values, respectively. Then, a framework to assess the lives of fatigue initiation and fatigue crack propagation by accumulated plastic strain energy density is proposed. Finally, this method is applied to two types of aluminum alloy, LC9 and LY12 for low-cycle fatigue, and agreed well with the experiments.


2004 ◽  
Vol 261-263 ◽  
pp. 1129-1134
Author(s):  
Seong Gu Hong ◽  
Soon Bok Lee

Low cycle fatigue (LCF) tests were carried out in a wide temperature range (20°C-650°C)at strain rates of 1×10-4/s-1×10-2/s for 17% cold worked (CW) 316L stainless steel to investigate the conditions for the occurrence of dynamic strain aging (DSA) and its effects on material properties during LCF deformation. DSA introduced anomalous changes of LCF properties, and the DSA regime under LCF loading condition coincided with that in tensile loading condition. During LCF deformation, dynamic stain aging can be manifested in the forms of the occurrence of the plateau or the peak in the variation of cyclic peak stress with temperature, the negative temperature dependence of plastic strain amplitude or softening ratio, the negative strain rate sensitivity, and the negative strain rate dependence of plastic strain amplitude or softening ratio.


2011 ◽  
Vol 194-196 ◽  
pp. 1210-1216
Author(s):  
Mou Sheng Song ◽  
Mao Wu Ran

In this paper, the problem of plastic strain energy density as a evaluation of low-cycle fatigue (LCF) properties for A356 alloys with various Ti content and Ti-addition methods is considered. The experimental results reveal that it is not the Ti-addition methods but the Ti content that has played an important role in influencing on the plastic strain energy density, thus on the LCF life. Whether for the electrolytic A356 alloys or for the melted A356 alloys, the alloys with 0.1% Ti content can consume higher cyclic plastic strain energy during the cyclic deformation compared with the alloys with 0.14% Ti content due to the better plasticity, giving rise to a better fatigue resistance and a longer LCF life. Because of the different macro or micro deformation mechanism, the fracture surface of electrolytic A356 alloy exhibits the diverse microstructural morphologies under the various strain amplitude.


2011 ◽  
Vol 21 (8) ◽  
pp. 1128-1153 ◽  
Author(s):  
Shun-Peng Zhu ◽  
Hong-Zhong Huang ◽  
Victor Ontiveros ◽  
Li-Ping He ◽  
Mohammad Modarres

Probabilistic methods have been widely used to account for uncertainty of various sources in predicting fatigue life for components or materials. The Bayesian approach can potentially give more complete estimates by combining test data with technological knowledge available from theoretical analyses and/or previous experimental results, and provides for uncertainty quantification and the ability to update predictions based on new data, which can save time and money. The aim of the present article is to develop a probabilistic methodology for low cycle fatigue life prediction using an energy-based damage parameter with Bayes’ theorem and to demonstrate the use of an efficient probabilistic method, moreover, to quantify model uncertainty resulting from creation of different deterministic model parameters. For most high-temperature structures, more than one model was created to represent the complicated behaviors of materials at high temperature. The uncertainty involved in selecting the best model from among all the possible models should not be ignored. Accordingly, a black-box approach is used to quantify the model uncertainty for three damage parameters (the generalized damage parameter, Smith–Watson–Topper and plastic strain energy density) using measured differences between experimental data and model predictions under a Bayesian inference framework. The verification cases were based on experimental data in the literature for the Ni-base superalloy GH4133 tested at various temperatures. Based on the experimentally determined distributions of material properties and model parameters, the predicted distributions of fatigue life agree with the experimental results. The results show that the uncertainty bounds using the generalized damage parameter for life prediction are tighter than that of Smith–Watson–Topper and plastic strain energy density methods based on the same available knowledge.


Sign in / Sign up

Export Citation Format

Share Document