fatigue initiation
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 19)

H-INDEX

15
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5802
Author(s):  
Yixun Wang ◽  
Kazushi Ueda ◽  
Ryota Nagao ◽  
Seiichiro Tsutsumi

The existing methods of assessing the fatigue life of welded joints fail to consider local strain ranges and mean stress at the weld toe. The present work proposes a novel approach to assessing the fatigue life of welded joints by conducting measurements with digital image correlation (DIC) and X-ray diffraction (XRD) in combination. Local strain ranges at the weld toe of gusset welded joints were measured by DIC. Hammer peening was conducted on the welded joints to introduce different initial stresses. The influence of mean stress was investigated by considering initial residual stress measured by XRD and a perfect plastic material model. The fatigue experiment was carried out on specimens with and without hammer peening. The results showed that hammer peening could offset adverse welding deformation effectively, and introduce significant residual compressive stress. The fatigue failure life increased by more than 15 times due to hammer peening. The fatigue initiation life assessed by the proposed method was close to that based on nominal stress, indicating that the proposed method is reliable for predicting the fatigue initiation life of welded joints.


Author(s):  
M. Mlikota ◽  
K. Dogahe ◽  
S. Schmauder ◽  
Ž. Božić

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2372
Author(s):  
Yifeng Hu ◽  
Junping Shi ◽  
Xiaoshan Cao ◽  
Jinju Zhi

The accumulated plastic strain energy density at a dangerous point is studied to estimate the low cycle fatigue life that is composed of fatigue initiation life and fatigue crack propagation life. The modified Ramberg–Osgood constitutive relation is applied to characterize the stress–strain relationship of the strain-hardening material. The plastic strain energy density under uni-axial tension and cyclic load are derived, which are used as threshold and reference values, respectively. Then, a framework to assess the lives of fatigue initiation and fatigue crack propagation by accumulated plastic strain energy density is proposed. Finally, this method is applied to two types of aluminum alloy, LC9 and LY12 for low-cycle fatigue, and agreed well with the experiments.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 366
Author(s):  
Zhou Chen ◽  
Yibo Jiang ◽  
Zheming Tong ◽  
Shuiguang Tong

The rolling contact fatigue of gear surfaces in a heavy loader gearbox is investigated under various working conditions using the critical plane-based multiaxial Fatemi–Socie criterion. The mechanism for residual stress to increase the fatigue initiation life is that the compressive residual stress has a negative normal component on the critical plane. Based on this mechanism, the genetic algorithm is used to search the optimum residual stress distribution that can maximize the fatigue initiation life for a wide range of working conditions. The optimum residual stress distribution is more effective in increasing the fatigue initiation life when the friction coefficient is larger than its critical value, above which the fatigue initiation moves from the subsurface to the surface. Finally, the effect on the fatigue initiation life when the residual stress distribution deviates from the optimum distribution is analyzed. A sound physical explanation for this effect is provided. This yields a useful guideline to design the residual stress distribution.


Sign in / Sign up

Export Citation Format

Share Document