Mixed Convection Flow Over a Semi-Infinite Horizontal Plate With Vectored Mass Transfer

1982 ◽  
Vol 104 (3) ◽  
pp. 558-560 ◽  
Author(s):  
J. Dey
2012 ◽  
Vol 11 (3) ◽  
pp. 51-76
Author(s):  
J Prakash ◽  
B Rushi Kumar ◽  
R Sivaraj

This study examines the problem of steady, MHD, mixed convection flow of an incompressible viscous fluid past a semi-infinite vertical permeable plate with slip condition at the boundary layer. The flow field is exposed to the influence of buoyancy, Ohmic heating and Soret effects. The governing equations include the continuity, linear momentum, energy and mass transfer equations which are solved analytically by using perturbation method. The results of this parametric study on the velocity, temperature and concentration distributions are shown graphically and the physical aspects of the problem are highlighted and discussed. The effect of shear stress, rate of heat and mass transfer coefficients at the channel walls are displayed in tables.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Kalidas Das ◽  
Pinaki Ranjan Duari ◽  
Prabir Kumar Kundu

The present article gives a ray of light on the effects of magnetic field on an unsteady mixed convection flow of nanofluids containing nanoparticles which are spherical and cylindrical in nature. The unsteadiness in the flow is mainly caused by time dependent stretching velocity and temperature of the sheet at the surface. The governing transportation equations are first transformed into ordinary differential equations by using similarity transformations and then solved by employing Runga–Kutta–Frelberg method with shooting technique. The influence of various parameters on velocity and temperature profiles as well as wall shear stress and the rate of mass transfer are discussed through graphs and tables. The results for regular fluid (water) from the study are in excellent agreement with the results reported in the literature.


2013 ◽  
Vol 18 (4) ◽  
pp. 1151-1164 ◽  
Author(s):  
G.V.R. Reddy ◽  
B.A. Reddy ◽  
N.B. Reddy

Abstract The effects of thermal radiation and mass transfer on an unsteady hydromagnetic boundary layer mixed convection flow along a vertical porous stretching surface with heat generation are studied. The fluid is assumed to be viscous and incompressible. The governing partial differential equations are transformed into a system of ordinary differential equations using similarity variables. Numerical solutions of these equations are obtained by using the Runge-Kutta fourth order method along with the shooting technique. Velocity, temperature, concentration, the skin-friction coefficient, Nusselt number and Sherwood number for variations in the governing thermo physical parameters are computed, analyzed and discussed.


Sign in / Sign up

Export Citation Format

Share Document