scholarly journals MHD Mixed Convection Flow over a Permeable Vertical Plate with Buoyancy and Soret Effects

2012 ◽  
Vol 11 (3) ◽  
pp. 51-76
Author(s):  
J Prakash ◽  
B Rushi Kumar ◽  
R Sivaraj

This study examines the problem of steady, MHD, mixed convection flow of an incompressible viscous fluid past a semi-infinite vertical permeable plate with slip condition at the boundary layer. The flow field is exposed to the influence of buoyancy, Ohmic heating and Soret effects. The governing equations include the continuity, linear momentum, energy and mass transfer equations which are solved analytically by using perturbation method. The results of this parametric study on the velocity, temperature and concentration distributions are shown graphically and the physical aspects of the problem are highlighted and discussed. The effect of shear stress, rate of heat and mass transfer coefficients at the channel walls are displayed in tables.

2020 ◽  
Vol 45 (4) ◽  
pp. 373-383
Author(s):  
Nepal Chandra Roy ◽  
Sadia Siddiqa

AbstractA mathematical model for mixed convection flow of a nanofluid along a vertical wavy surface has been studied. Numerical results reveal the effects of the volume fraction of nanoparticles, the axial distribution, the Richardson number, and the amplitude/wavelength ratio on the heat transfer of Al2O3-water nanofluid. By increasing the volume fraction of nanoparticles, the local Nusselt number and the thermal boundary layer increases significantly. In case of \mathrm{Ri}=1.0, the inclusion of 2 % and 5 % nanoparticles in the pure fluid augments the local Nusselt number, measured at the axial position 6.0, by 6.6 % and 16.3 % for a flat plate and by 5.9 % and 14.5 %, and 5.4 % and 13.3 % for the wavy surfaces with an amplitude/wavelength ratio of 0.1 and 0.2, respectively. However, when the Richardson number is increased, the local Nusselt number is found to increase but the thermal boundary layer decreases. For small values of the amplitude/wavelength ratio, the two harmonics pattern of the energy field cannot be detected by the local Nusselt number curve, however the isotherms clearly demonstrate this characteristic. The pressure leads to the first harmonic, and the buoyancy, diffusion, and inertia forces produce the second harmonic.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Wubshet Ibrahim ◽  
Chaluma Zemedu

In this paper, two-dimensional steady laminar boundary layer flow of a nonlinear mixed convection flow of micropolar nanofluid with Soret and magnetic field effect over a nonisothermal sphere is evaluated. The mathematical formulation for the flow problem has been made with appropriate similarity transformation and dimensionless variables, and the main nonlinear boundary value problems were reduced into mixed high-order nonlinear ordinary differential equations. Solution for velocity, microrotation, temperature, and concentration has been obtained numerically. The equations were calculated using method bvp4c from Matlab software for various quantities of main parameters. The effects of various parameters on skin friction coefficient f″0, wall duo stress coefficient -G′0, and convection mass transfer coefficient -Φ′0 are analysed and presented through the graphs and tables. The convergence test has been maintained. For the number of points greater than the suitable mesh number of points, the precision is not influenced but the set time is increased. Moreover, a comparison with a previous paper, obtainable in the literature, has been presented and an excellent agreement is obtained. The findings indicate that an increase in the values of nonisothermal parameters (m, P), magnetic Ma, thermal and solutal nonlinear convection (λ, s) parameter, and Soret number is to enhance the temperature difference between the boundary layer and ambient fluid to diffuse which increases the velocity profile f′ζ and their boundary layer thicknesses near the surface of the sphere.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Kalidas Das ◽  
Pinaki Ranjan Duari ◽  
Prabir Kumar Kundu

The present article gives a ray of light on the effects of magnetic field on an unsteady mixed convection flow of nanofluids containing nanoparticles which are spherical and cylindrical in nature. The unsteadiness in the flow is mainly caused by time dependent stretching velocity and temperature of the sheet at the surface. The governing transportation equations are first transformed into ordinary differential equations by using similarity transformations and then solved by employing Runga–Kutta–Frelberg method with shooting technique. The influence of various parameters on velocity and temperature profiles as well as wall shear stress and the rate of mass transfer are discussed through graphs and tables. The results for regular fluid (water) from the study are in excellent agreement with the results reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document