Heat and Mass Transfer Associated With Condensation on a Moving Drop: Solutions for Intermediate Reynolds Numbers by a Boundary Layer Formulation

1985 ◽  
Vol 107 (2) ◽  
pp. 409-416 ◽  
Author(s):  
T. Sundararajan ◽  
P. S. Ayyaswamy

Condensation heat and mass transfer to a liquid drop moving in a mixture of saturated vapor and a noncondensable have been evaluated. The Reynolds number of the drop motion is 0(100). The quasi-steady, coupled, boundary layer equations for the flow field and the transport in the gaseous phase are simultaneously solved. The heat transport inside the drop is treated as a transient process. Results are presented for the heat and mass transport rates to the drop, the surface shear stress, the velocity profiles across the boundary layer, and the temperature-time history of the drop. The comparisons of results with experimental data, where available, show excellent agreement. Tables summarizing results appropriate to a wide range of condensation rates have been included. Local heat and mass transfer rates have also been presented. These features will make the paper useful to the designer of direct contact heat transfer equipment.

2010 ◽  
Vol 65 (11) ◽  
pp. 950-960 ◽  
Author(s):  
Tasawar Hayat ◽  
Muhammad Qasim

An analysis has been carried out to study the combined effects of heat and mass transfer on the unsteady flow of a micropolar fluid over a stretching sheet. The thermal radiation effects are presented. The arising nonlinear partial differential equations are first reduced to a set of nonlinear ordinary differential equations and then solved by the homotopy analysis method (HAM). Plots for various interesting parameters are presented and discussed. Numerical data for surface shear stress, Nusselt number, and Sherwood number in steady case are also tabulated. Comparison between the present and previous limiting results is given.


1993 ◽  
Vol 115 (3) ◽  
pp. 606-612 ◽  
Author(s):  
R. L. Mahajan ◽  
D. Angirasa

A numerical study is presented for combined heat and mass transfer by natural convection from a vertical surface with opposing buoyancy effects. A comparison with similarity solutions shows that boundary layer analysis is suitable only when the two buoyant forces aid each other. For opposing flows the boundary layer analysis does not predict the transport rates accurately. A detailed comparison with experimental data with opposing buoyancies shows good agreement between the data and the numerical solutions. The heat and mass transfer rates follow complex trends depending on the buoyancy ratio and the Prandtl and Schmidt numbers. Comprehensive Nusselt and Sherwood number data are presented for a wide range of thermal Grashof number, buoyancy ratio, and Prandtl and Schmidt numbers.


Sign in / Sign up

Export Citation Format

Share Document