saturated vapor
Recently Published Documents


TOTAL DOCUMENTS

462
(FIVE YEARS 96)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 24 (4) ◽  
pp. 17-27
Author(s):  
Hanna S. Vorobieva ◽  

The degree of dryness is the most important parameter that determines the state of a real gas and the thermodynamic properties of the working fluid in a two-phase region. This article presents a modified Redlich-Kwong-Aungier equation of state to determine the degree of dryness in the two-phase region of a real gas. Selected as the working fluid under study was CO2. The results were validated using the Span-Wanger equation presented in the mini-REFPROP program, the equation being closest to the experimental data in the CO2 two-phase region. For the proposed method, the initial data are temperature and density, critical properties of the working fluid, its eccentricity coefficient, and molar mass. In the process of its solution, determined are the pressure, which for a two-phase region becomes the pressure of saturated vapor, the volumes of the gas and liquid phases of a two-phase region, the densities of the gas and liquid phases, and the degree of dryness. The saturated vapor pressure was found using the Lee-Kesler and Pitzer method, the results being in good agreement with the experimental data. The volume of the gas phase of a two-phase region is determined by the modified Redlich-Kwong-Aungier equation of state. The paper proposes a correlation equation for the scale correction used in the Redlich-Kwongda-Aungier equation of state for the gas phase of a two-phase region. The volume of the liquid phase was found by the Yamada-Gann method. The volumes of both phases were validated against the basic data, and are in good agreement. The results obtained for the degree of dryness also showed good agreement with the basic values, which ensures the applicability of the proposed method in the entire two-phase region, limited by the temperature range from 220 to 300 K. The results also open up the possibility to develop the method in the triple point region (216.59K-220 K) and in the near-critical region (300 K-304.13 K), as well as to determine, with greater accuracy, the basic CO2 thermodynamic parameters in the two-phase region, such as enthalpy, entropy, viscosity, compressibility coefficient, specific heat capacity and thermal conductivity coefficient for the gas and liquid phases. Due to the simplicity of the form of the equation of state and a small number of empirical coefficients, the obtained technique can be used for practical problems of computational fluid dynamics without spending a lot of computation time.


Author(s):  
Alexandr Zarvin ◽  
Alexandr Yaskin ◽  
Valeriy Kalyada ◽  
Kirill Dubrovin

Abstract Experimental results of observing ethanol micro-jets expiring into a highly rarefied medium (vacuum) through a nozzle are presented. The study of the process was carried out both at the horizontal and vertical liquid stream from the source compared to the direction of gravity The residual background gas pressure in the vacuum chamber was maintained at a level much lower than the saturated vapor pressure of the working fluid at a given outlet temperature. The possibility of modeling complex processes of micro-fluids expiring into a medium with a given rarefied atmosphere on a compact vacuum gas-dynamic stand is shown. It is established that the long-term flow from a thin capillary or a small-diameter hole into a vacuum or a highly rarefied gas medium differs significantly from the well-studied flow modes into a dense gas medium, as well as from the pulsed flow modes into a vacuum. The paper describes the main features of the flow and the conditions for the occurrence of instability. It is shown that the long-term flow of a liquid micro-jet in a vacuum has a high degree of surface instability, with a large number of sudden changes in the direction, structure, and observed density. An explanation of the reasons for the destruction of the micro-jet is proposed. The formation of surface gas caverns causing explosive destruction of the micro-jet with the release of vapor-liquid droplets is established.


Author(s):  
Никита Александрович Клычков ◽  
Вячеслав Владимирович Симаков ◽  
Илья Владимирович Синёв ◽  
Дмитрий Александрович Тимошенко

Исследовано влияние паров органических веществ (изопропанола, этанола и ацетона) различной концентрации на отклик сенсоров газа на основе наноструктурированных пленок диоксида олова, синтезированных золь-гель методом. Экспериментально установлено, что напуск газовых проб, содержащих пары органических веществ, приводит к увеличению проводимости наноструктурированных пленок диоксида олова. В области высоких концентраций (более 50% от насыщенного пара) концентрационная зависимость проводимости имеет тенденцию к насыщению. Показана возможность распознавания сорта примесного газа с помощью статистической обработки отклика только одного сенсора при различных концентрациях анализируемой пробы. Определено положение поверхностного донорного уровня примесного газа относительно акцепторного уровня кислорода и теплота десорбции частиц исследуемых газов. Предложен новый метод мультипараметрического распознавания газовых смесей, основанный на использование в качестве признаков классификации физико-химических параметров анализируемых газов, не зависящих от их концентрации. Установлено, что предложенный метод мультипараметрического распознавания газовых смесей имеет более высокую надежность по сравнению со стандартными методами, основанными на анализе отклика сенсоров газа. The influence of organic vapors (isopropanol, ethanol, and acetone) with different concentrations in air on a response gas sensor based on nanostructured tin dioxide films synthesized by the sol-gel method was studied. It was found experimentally that inject of the gas mixtures containing organic vapors into measure chamber results to an increase of the conductivity of nanostructured tin dioxide films. In the area of high concentrations (more than 50% of saturated vapor), the concentration dependence of conductivity trends to saturation. The recognizing possibility of species gas admixture by using statistical processing of response only single sensor at different analyzed gas mixture concentrations is validated. The surface donor level of gas-reducing relative to acceptor level oxygen and desorption heat of gas particle were determined. A new method based multiparametric recognition gas mixtures is proposed based on using concentration-independent physical and chemical parameters of analyzed gases as classification properties. It is shown that proposed multiparametric recognition method has higher reliability in comparison with standard methods based on the analysis gas sensor response.


2021 ◽  
Vol 11 (2) ◽  
pp. 171-177
Author(s):  
Evgeny A. KRESTIN ◽  
Grigoriy V. SEREBRYAKOV

Non-contact seals with fl at slott ed gaps of drives of electric power systems used in switchgears of hydraulic units, as well as in pumps and hydraulic motors have been investigated. Calculation of seals based on average clearance results in an underestimation or overestimation of the leakage rate compared to the operational values. The regularity of the distribution of pressure and fl ow rate in the gap of a fl at conical slot is determined, and formulas for the fl ow rate (leakage) and friction forces acting on the walls of the conical slot are found. To solve the problem, the approximate Navier-Stokes and fl ow continuity equations are used. Several special cases of the fl ow of the working fl uid in diff erent gaps are considered: a plane-parallel gap with an oscillating wall and at a constant pressure gradient and a conical gap at diff erent ratios of the pressure drop and the frictional action of the moving channel wall. When the wall oscillates in a conical gap and constant pressure, the presence of an extremum is characteristic. In this case, an excess pressure appeared in the slott ed gap, creating a supporting force, and the pressure value became high enough. When the lower wall of the conical slot moves in the direction of the increasing gap, the pressure inside the slott ed channel, under certain conditions, can reach a complete vacuum, the value of which is limited by the bulk strength of the liquid and the pressure of saturated vapor at a given temperature. When the pressure drop and oscillations of the wall of the conical gap are additive, then at a suffi ciently high velocity of the wall movement, the pressure inside the slot can even increase and exceed the value of the supplied pressure.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012167
Author(s):  
I V Petrova ◽  
V I Ermolov ◽  
A K Rebrov

Abstract This paper presents an original design of a high-vacuum steam jet pump in which a heater made of a heating cable is immersed in a working fluid located in a stainless steel boiler. At the same time, the boiler itself is vacuum isolated from the pump housing. There is also a heater made of a heating cable in a stainless steel shell, made in the form of a spiral and immersed in a working fluid. Such an arrangement of the heater is possible only when a liquid with a homogeneous chemical composition and a low saturated vapor pressure is used as a working fluid in high-vacuum pumps.


Author(s):  
V. Zhelezny ◽  
S. Korniievych ◽  
O. Khliyeva ◽  
D. Ivchenko

An investigation of the saturated vapor pressure for the solutions of propane in the two type of industrial compressor oils ProEco®RF22S and RENISO SP46, also as in oil ProEco®RF22S containing fullerene C60 6.837·10-4kg·kg-1is presented in this paper. The measurement of the saturated vapor pressure was conducted using a static method in a temperature range (273…333) K and thepropanemass fraction (0.11…0.595) kg·kg-1. An analysis revealed that the expanded uncertainties of the measured saturated vapor pressure do not exceed 0.0419·105Pafor solutionpropane/ProEco®RF22S,0.0716·105Pa for solution propane /RENISO SP46, and 0.0095·105Pa for solution propane/ProEco®RF22 Scontaining C60.The temperature and concentration dependences of the saturated vapor pressure for the object of study have been discussed. The excess of saturated vapor pressure for the solution of propane in oil ProEco®RF22S over the pressure of the solution of propane in oil RENISO SP46 reaches 1.5 105 Pa at a temperature of 330 K and propane fractionof 0.1 kg·kg-1. This effect decreases with temperature decreasing and propane fraction increasing.It was proven that the additive of the fullerene C60 increase the saturated vapor pressure of the solution propane/ProEco® RF22S up to 0.4·105Pa at low temperature and low propane mass fraction insolution. The results obtained proved the expediency of the introduction in the industry the solution of propane/compressor oil ProEco® RF22Scontaining the fullerene C60 as working fluid of vapor compression refrigeration system. The ability of C60additive in oil to increase the saturated vapor pressure of considered working fluid will contribute to increasing the energy efficiency of refrigeration systems.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1478
Author(s):  
Anatoliy M. Dunaev ◽  
Vladimir B. Motalov ◽  
Lev S. Kudin

A multi-technique approach based on Knudsen effusion mass spectrometry, gas phase chromatography, mass spectrometry, NMR and IR spectroscopy, thermal analysis, and quantum-chemical calculations was used to study the evaporation of 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4). The saturated vapor over BMImBF4 was shown to have a complex composition which consisted of the neutral ion pairs (NIPs) [BMIm+][BF4−], imidazole-2-ylidene C8N2H14BF3, 1-methylimidazole C4N2H6, 1-butene C4H8, hydrogen fluoride HF, and boron trifluoride BF3. The vapor composition strongly depends on the evaporation conditions, shifting from congruent evaporation in the form of NIP under Langmuir conditions (open surface) to primary evaporation in the form of decomposition products under equilibrium conditions (Knudsen cell). Decomposition into imidazole-2-ylidene and HF is preferred. The vapor composition of BMImBF4 is temperature-depended as well: the fraction ratio of [BMIm+][BF4−] NIPs to decomposition products decreased by about a factor of three in the temperature range from 450 K to 510 K.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012043
Author(s):  
Dan Mei ◽  
Xuemei Xu

Abstract The particle transport characteristics have a significant effect on the exposure of residents and pedestrians to traffic pollutants in the street canyon. Around the lakeside environment, the diffusion of water vapor affects the flow characteristics of the gas mixture, which has a considerable influence on particle transport in the street canyon. A computational domain containing water bodies from which droplets were emitted by evaporation, a lakeside avenue and architectural groups were constructed. The RNG k-ε turbulence model and discrete phase model were applied to study the velocity, pressure, density of the airflow and particle transport characteristics in the street canyon with the absolute humidity increase (AHI) of 0, 3.8×10-4 g/kg, 1.7×10-3 g/kg, 3.1×10-3 g/kg. The saturated vapor pressure on the surface of droplets was modified by the pressure correction equation, which can limit the evaporation rate of the droplets. The simulation results demonstrated that, the diffusion of vapor could reduce the airflow velocity and increase the air pressure and density. The particle concentration in the street canyon increased with the AHI. Most of the pathogens in the air are transmitted with the flow of particle, and the study has some guiding significance to prevent the transmission of viruses.


2021 ◽  
Vol 4 (2) ◽  
pp. 10-16
Author(s):  
S. I. Gerasymchuk ◽  
◽  
I. P. Poliuzhyn ◽  
H. V. Melnyk ◽  
Yu. P. Pavlovskyi ◽  
...  

Using a semi-empirical Wilson’s model, the vapor-liquid equilibrium in the “diethylzinc - diethyl selenide” system is described: the activity coefficients of the solution components, the separation coefficient, the excess functions of the solution (HE, GE, TSE) are calculated, and isothermal P-X diagrams are obtained. The parameters of the Wilson’s model were calculated on the basis of our data on measuring the temperature dependence for saturated vapor pressure of high-purity samples of diethylzinc, diethyl selenide and their equimolecular solution using iterations from the mathematical software package Mathsad 14. Peculiarities of intermolecular interaction in the “diethylzinc – diethyl selenide” system and the presence of a negative deviation from Raoul's law have been found. The studied system is homogeneous in the whole concentration range. The concentration dependence of the enthalpy of mixing is alternating for the researched temperature range (280-340 K).


2021 ◽  
Author(s):  
Rehan Khalid ◽  
Raffaele Luca Amalfi ◽  
Aaron P. Wemhoff

Abstract This paper is focused on the modeling of a brazed plate heat exchanger (BPHE) for a novel in-rack cooling loop coupled with heat recovery capability for enhanced thermal management of datacenters. In the proposed technology, the BPHE is acting as a condenser, and the model presented in this study can be applied in either the cooling loop or vapor recompression loop. Thus, the primary fluid enters as either superheated (in the vapor recompression loop) or saturated vapor (in the cooling loop), while the secondary fluid enters as a sub-cooled liquid. The model augments an existing technique from the open literature and is applied to condensation of a low-pressure refrigerant R245fa. The model assumes a two-fluid heat exchanger with R245fa and water as the primary and secondary fluids, respectively, flowing in counterflow configuration; however, the model can also handle parallel flow configuration. The 2-D model divides the heat exchanger geometry into a discrete number of slices to analyze heat transfer and pressure drops (including static, momentum and frictional losses) of both fluids, which are used to predict the exit temperature and pressure of both fluids. The model predicts the exchanger duty based on the local energy balance. The predicted values of fluid output properties (secondary fluid temperature and pressure, and primary fluid vapor quality and pressure) along with heat exchanger duty show good agreement when compared against a commercial software.


Sign in / Sign up

Export Citation Format

Share Document