Forced Convection Heat Transfer in a Finitely Conducting Externally Finned Pipe

1988 ◽  
Vol 110 (3) ◽  
pp. 571-576 ◽  
Author(s):  
F. Moukalled ◽  
S. Acharya

A numerical study to determine the influence of axial wall conduction on forced convection heat transfer in an externally finned pipe has been made. The effects of wall conductivity, interfin spacing, and external heat transfer coefficient are examined by comparing the results with the corresponding solutions obtained assuming negligible wall conduction. Results indicate that the axial conduction in the pipe walls has a significant influence on the heat transfer behavior. The bulk temperature or the heat transferred to the fluid is underestimated when wall conduction is ignored. At high wall conductivity values, the wall temperatures and Nusselt numbers exhibit a monotonic variation in the axial direction, with the behavior becoming increasingly nonmonotonic as the wall conductivity value is decreased.

2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 467-475 ◽  
Author(s):  
Habib-Olah Sayehvand ◽  
Sakene Yari ◽  
Parsa Basiri

Staggered arrangement is one of the common configurations in heat exchangers that make better mixing of flow and heat transfer augmentation than other arrangements. In this paper forced convection heat transfer over three isothermal circular cylinders in staggered configuration in isotropic packed bed was investigated. In this work laminar 2-D incompressible steady-state equations of momentum and energy were solved numerically by finite volume method. Simulation was done in three Reynolds numbers of 80, 120, and 200. The results indicate that, using porous medium the Nusselt number enhanced considerably for any of cylinders and it presents thin temperature contours for them. Also is shown that by increasing Reynolds number, the heat transfer increased in both channel but the growth rate of it in porous media is larger. In addition, results of simulation in porous channel show that with increasing Peclet number, heat transfer increased logarithmically.


Sign in / Sign up

Export Citation Format

Share Document