A Direct Method for Analyzing Accelerations in Complex Mechanisms

1972 ◽  
Vol 39 (1) ◽  
pp. 266-271
Author(s):  
C. H. Chiang

Complex mechanism containing four-bar loops may be treated as simpler compound mechanisms in acceleration analysis by introducing the relative center of curvature of the relative path of a certain point on one link with respect to the opposite link. By means of a new method of acceleration analysis recently suggested by the author, together with the relative center of curvature, it is possible to analyze accelerations of complex mechanisms in a simple and direct way. Results thus obtained are obviously more accurate than those found by using the conventional acceleration diagram method.

2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Reza Ghanbari ◽  
Khatere Ghorbani-Moghadam ◽  
Nezam Mahdavi-Amiri

We propose a new method for ordering bipolar fuzzy numbers. In this method, for comparison of bipolar LR fuzzy numbers, we use an extension of Kerre’s method being used in ordering of unipolar fuzzy numbers. We give a direct formula to compare two bipolar triangular fuzzy numbers in O(1) operations, making the process useful for many optimization algorithms. Also, we present an application of bipolar fuzzy number in a real life problem.


Author(s):  
Hui-Ping Shen ◽  
Ting-Li Yang

Abstract This work presents a new method for kinematic analysis of planar complex mechanisms, i. e, the ordered single-opened-chains method. This method makes use of the ordered single-opened chains (in short, SOC.) along with the properities of SOC, and the network constraints relationship between SOC. By this method, any planar complex mechanism ran be automatically decomposed into a series of the ordered single-opened chains and the optimal structural decomposition route(s) can be automatically selected for kinematic analysis. The kinematic analysis equations with fewest unknown variables can be automatically generated and easily solved. Perhaps, the most attractive features of this method are its high automation and convergence in computer implementations. This work firstly describes the principle of the ordered SOC method and then introduces the computer automatic generation of this method along with the application to two complex linkages. The method developed can be easily extended to the kinemetic analysis of the spatial mechanisms.


2021 ◽  
Vol 7 (17) ◽  
pp. eabf8283
Author(s):  
Sibao Liu ◽  
Pavel A. Kots ◽  
Brandon C. Vance ◽  
Andrew Danielson ◽  
Dionisios G. Vlachos

Single-use plastics impose an enormous environmental threat, but their recycling, especially of polyolefins, has been proven challenging. We report a direct method to selectively convert polyolefins to branched, liquid fuels including diesel, jet, and gasoline-range hydrocarbons, with high yield up to 85% over Pt/WO3/ZrO2 and HY zeolite in hydrogen at temperatures as low as 225°C. The process proceeds via tandem catalysis with initial activation of the polymer primarily over Pt, with subsequent cracking over the acid sites of WO3/ZrO2 and HY zeolite, isomerization over WO3/ZrO2 sites, and hydrogenation of olefin intermediates over Pt. The process can be tuned to convert different common plastic wastes, including low- and high-density polyethylene, polypropylene, polystyrene, everyday polyethylene bottles and bags, and composite plastics to desirable fuels and light lubricants.


Sign in / Sign up

Export Citation Format

Share Document