A New Method and Automatic Generation for Kinematic Analysis of Complex Planar Mechanisms Based on the Ordered Single-Opened-Chains

Author(s):  
Hui-Ping Shen ◽  
Ting-Li Yang

Abstract This work presents a new method for kinematic analysis of planar complex mechanisms, i. e, the ordered single-opened-chains method. This method makes use of the ordered single-opened chains (in short, SOC.) along with the properities of SOC, and the network constraints relationship between SOC. By this method, any planar complex mechanism ran be automatically decomposed into a series of the ordered single-opened chains and the optimal structural decomposition route(s) can be automatically selected for kinematic analysis. The kinematic analysis equations with fewest unknown variables can be automatically generated and easily solved. Perhaps, the most attractive features of this method are its high automation and convergence in computer implementations. This work firstly describes the principle of the ordered SOC method and then introduces the computer automatic generation of this method along with the application to two complex linkages. The method developed can be easily extended to the kinemetic analysis of the spatial mechanisms.

Author(s):  
Song-Qing Shan ◽  
Ting-Li Yang

Abstract This paper presents a new method for kinematic error analysis of planar complex mechanisms, i.e., the ordered single -opened -chains method. This approach is based on the ordered single-opened chains (namely, series binary links, in short, SOCs)and makes use of the properties of SOCs and the network constraint relationships between SOCs. Its mathematical model harmonizes with the structure, kinematics, and dynamics model of mechanisms. The kinematic error analysis equations with few unknown variables can be automatically generated and easily solved. Therefore, any planar complex mechanism can be automatically decomposed into a series of the ordered single-opened-chains and then its kinematic error analysis can be easily completed through this method. Perhaps, the most attractive features of this method are its high automation and convergence in computer implementations. This work describes the principle of the ordered SOC method, introduces its computer automatic generation and compiles the corresponding computer program KEAPL. Two Examples are given at the end of the paper. The proposed method can be easily extended to the kinematic error analysis of the spatial mechanisms.


Author(s):  
Jian-Qing Zhang ◽  
Ting-Li Yang

Abstract This work presents a new method for kinetostatic analysis and dynamic analysis of complex planar mechanisms, i.e. the ordered single-opened-chains method. This method makes use of the ordered single-opened chains (in short, SOC,) along with the properties of SOC, and the network constraints relationship between SOC,. By this method, any planar complex mechanism can be automatically decomposed into a series of the ordered single-opened chains and the optimal structural decomposition route (s) can be automatically selected for dynamic analysis, the paper present the dynamic equation which can be used to solve both the kinetostatic problem and the general dynamic problem. The main advantage of the proposed approach is the possibility to reduce the number of equations to be solved simultaneously to the minimum, and its high automation as well. The other advantage is the simplification of the determination of the coefficients in the equations, and thus it maybe result in a much less time-consuming algorthem. The proposed approach is illustrated with three examples. The presented method can be easily extended to the dynamic analysis of spatial mechanisms.


Author(s):  
D J A Simpson ◽  
J E L Simmons ◽  
G Moldovean

This paper describes a new approach to the kinematic analysis of planar mechanisms. The basis of the analytical method is a generic four-bar sub-mechanism which is used as the single building block from which other composite mechanisms may be created. A computer program has been written embodying this method and has been demonstrated to operate successfully providing animated displays of displacement, velocity and acceleration diagrams for a wide range of complex mechanisms.


1972 ◽  
Vol 39 (1) ◽  
pp. 266-271
Author(s):  
C. H. Chiang

Complex mechanism containing four-bar loops may be treated as simpler compound mechanisms in acceleration analysis by introducing the relative center of curvature of the relative path of a certain point on one link with respect to the opposite link. By means of a new method of acceleration analysis recently suggested by the author, together with the relative center of curvature, it is possible to analyze accelerations of complex mechanisms in a simple and direct way. Results thus obtained are obviously more accurate than those found by using the conventional acceleration diagram method.


1972 ◽  
Vol 1 (3) ◽  
pp. 129-134 ◽  
Author(s):  
M.O.M. Osman ◽  
D. Segev

The concept and use of constant-distance equations for the kinematic analysis of linkages are presented. The procedure is based on the fact that a constant-distance equation is formulated, wherever the distance between two pair-centers of a rigid link remains constant throughout its motion. This results in a much simpler kinematic analysis of the linkage. To illustrate the procedure and the feasibility of the method, the cases of spatial RRRR– and RGCR-mechanisms with coupler points are considered. The technique is well suited to digital computer analysis of complex mechanisms; extensions to dimensional synthesis as well as to dynamic and mobility analysis are possible.


Author(s):  
Kazem Abhary

This paper describes a method for unified parametric kinematic analysis of those planar mechanisms whose geometry can be defined with a set of independent vectorial loops, i.e. solvable independently; this covers a wide range of planar mechanisms. The method is developed by employing the well-known vectorial illustration, and vectorial-loop equations solved with the aid of complex polar algebra leading to a total of only nine unified/generic one-unknown parametric equations consisting of five equations for position analysis and two equations for velocity and acceleration analysis each. Then, the kinematics of joints and mass centers are manifested as resultants of a few known vectors. This method is needless of relative-velocities, relative-accelerations, instantaneous centers of rotation and Kennedy’s Theorem dominantly used in the literature, especially textbooks. The efficiency of the method is demonstrated by its application to a complex mechanism through only eight unified equations, and simultaneously compared to the solution using the textbook common (Raven’s) method which required the derivation of 67 extra equations to get the same results. This reveals the fact that the method is not only a powerful tool for mechanical designers but a most powerful and efficient method for teaching and learning the kinematics of planar mechanisms.


2021 ◽  
Vol 1199 (1) ◽  
pp. 012076
Author(s):  
J Vavro ◽  
J Vavro ◽  
L Marček ◽  
M Taraba ◽  
L Klimek

Abstract This paper presents a kinematic and dynamic analysis and distribution of the stress for seven-item planar mechanism by means of the SolidWorks software. The authors of the introduced paper deal with the kinematic analysis of planar mechanisms as well as with the implementation of the vector method into the SolidWorks software program in order to determine the kinematic variables (quantities) of the individual bodies in the whole complex system. The dynamic analysis is performed on the basis of the kinematic analysis. Dynamic analysis allows us to design a system of bodies correctly and it is with the respect to the dynamic loading. For the interpretation of the introduced analysis, the seven-item planar mechanism was selected. Graphic dependence of kinematic and dynamic magnitudes of some points is given in dependence on the angle of rotation of the driving item and in dependence on time. In relation to the kinematic and dynamic analysis and subsequent simulation of the planar as well as spatial mechanisms, it is perfect solution to use SolidWorks software program. The considerable advantage of this mentioned program is based on its simplicity from the aspect of modeling and moreover, it is important to point out that utilisation of the mentioned program leads to results which are precise and accurate in the case of the numerical solution of the equations in the whole magnitude referring to motion of mechanism while the given results are obtained in the graphic form.


2021 ◽  
Vol 1199 (1) ◽  
pp. 012047
Author(s):  
J Vavro ◽  
J Vavro ◽  
L Marček ◽  
M Taraba ◽  
L Klimek

Abstract This paper presents a kinematic and dynamic analysis and distribution of the stress for six-item planar mechanism by means of the SolidWorks software. The main purpose of the investigation is connected with the kinematic analysis of planar mechanisms as well as with the implementation of the vector method into the SolidWorks software program in order to determine the kinematic variables of the individual bodies in the whole investigated system. The process of the dynamic analysis is based on the kinematic analysis. The dynamic analysis makes possible to design a system of bodies correctly and it is with the respect to the dynamic loading. For the interpretation of the introduced analysis, the six-item planar mechanism was used as example (representative). Graphic dependence of kinematic and dynamic magnitudes of some points is given in dependence on the angle of rotation of the driving item and in dependence on time. In relation to the kinematic and dynamic analysis and subsequent simulation of the planar as well as spatial mechanisms, it is great solution to use SolidWorks software program. The considerable advantage of this mentioned program is based on its simplicity from the aspect of modeling and moreover, it is important to point out that utilisation of the mentioned program leads to results which are precise and accurate in the case of the numerical solution of the equations in the whole magnitude referring to motion of mechanism while the given results are obtained in the graphic form.


Author(s):  
Sio-Hou Lei ◽  
Ying-Chien Tsai

Abstract A method for synthesizing the types of spatial as well as planar mechanisms is expressed in this paper by using the concept of phase diagram in metallurgy. The concept represented as a type synthesis technique is applied to (a) planar mechanisms with n degrees of freedom and simple loop, (b) spatial mechanisms with single degree of freedom and simple loop, to enumerate all the possible mechanisms with physically realizable kinematic pairs. Based on the technique described, a set of new reciprocating mechanisms is generated as a practical application.


1971 ◽  
Vol 93 (1) ◽  
pp. 67-73 ◽  
Author(s):  
M. S. C. Yuan ◽  
F. Freudenstein ◽  
L. S. Woo

The basic concepts of screw coordinates described in Part I are applied to the numerical kinematic analysis of spatial mechanisms. The techniques are illustrated with reference to the displacement, velocity, and static-force-and-torque analysis of a general, single-degree-of-freedom spatial mechanism: a seven-link mechanism with screw pairs (H)7. By specialization the associated computer program is capable of analyzing many other single-loop spatial mechanisms. Numerical examples illustrate the results.


Sign in / Sign up

Export Citation Format

Share Document