Numerical Simulation of Particulate Motion in Turbulent Gas-Solid Channel Flow

1979 ◽  
Vol 101 (3) ◽  
pp. 319-325 ◽  
Author(s):  
R. L. Peskin ◽  
C. J. Kau

A three-dimensional numerical model for turbulent shear flow in a channel with large Reynolds number is employed for the investigation of turbulent diffusion of finite inertia particulates. A stochastic nonlinear equation describing the motion of particles is integrated to obtain Lagrangian information. Special attention is paid to the effects of shear flow and wall boundary conditions. The results of these studies are compared to previous theoretical and empirical results. A cubic time dependency for separation is found at intermediate values of time while linear dependency is observed at large times. Schmidt numbers are always found to be smaller than one in the non-homogeneous region. It was concluded that special attention must be paid to appropriate computation times necessary to obtain a statistical equilibrium.

1986 ◽  
Vol 29 (251) ◽  
pp. 1455-1461
Author(s):  
Yutaka MIYAKE ◽  
Takeo KAJISHIMA

1997 ◽  
Vol 330 ◽  
pp. 307-338 ◽  
Author(s):  
A. SIMONE ◽  
G.N. COLEMAN ◽  
C. CAMBON

The influence of compressibility upon the structure of homogeneous sheared turbulence is investigated. For the case in which the rate of shear is much larger than the rate of nonlinear interactions of the turbulence, the modification caused by compressibility to the amplification of turbulent kinetic energy by the mean shear is found to be primarily reflected in pressure–strain correlations and related to the anisotropy of the Reynolds stress tensor, rather than in explicit dilatational terms such as the pressure–dilatation correlation or the dilatational dissipation. The central role of a ‘distortion Mach number’ Md =  S[lscr ]/a, where S is the mean strain or shear rate, [lscr ] a lengthscale of energetic structures, and a the sonic speed, is demonstrated. This parameter has appeared in previous rapid-distortion-theory (RDT) and direct-numerical-simulation (DNS) studies; in order to generalize the previous analyses, the quasi-isentropic compressible RDT equations are numerically solved for homogeneous turbulence subjected to spherical (isotropic) compression, one-dimensional (axial) compression and pure shear. For pure-shear flow at finite Mach number, the RDT results display qualitatively different behaviour at large and small non-dimensional times St: when St < 4 the kinetic energy growth rate increases as the distortion Mach number increases; for St > 4 the inverse occurs, which is consistent with the frequently observed tendency for compressibility to stabilize a turbulent shear flow. This ‘crossover’ behaviour, which is not present when the mean distortion is irrotational, is due to the kinematic distortion and the mean-shear-induced linear coupling of the dilatational and solenoidal fields. The relevance of the RDT is illustrated by comparison to the recent DNS results of Sarkar (1995), as well as new DNS data, both of which were obtained by solving the fully nonlinear compressible Navier–Stokes equations. The linear quasi-isentropic RDT and nonlinear non-isentropic DNS solutions are in good general agreement over a wide range of parameters; this agreement gives new insight into the stabilizing and destabilizing effects of compressibility, and reveals the extent to which linear processes are responsible for modifying the structure of compressible turbulence.


The paper examines in detail the dispersion of a passive contaminant in steady and oscillatory turbulent shear flow in a two-dimensional channel. The aim of this examination is to understand dispersion in estuaries. A new method of analysing and predicting concentration distributions has been developed from work of Sullivan ( J. Fluid Mech . 49, 551–576 (1971)). A random walk technique is used, the contaminant being represented by a large number of marked particles whose paths are tracked as they move through the fluid. The technique seeks to model the physics of dispersion more realistically than the standard diffusion equation, and results from the simulation, with input based on data taken in the Mersey, show it to be a useful and versatile method of studying dispersion in oscillatory flows.


2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Aicha Hanafi ◽  
Hechmi Khlifi ◽  
Taieb Lili

The study of the phenomenon of compressibility for modeling to second order has been made by several authors, and they concluded that models of the pressure-strain are not able to predict the structural evolution of the Reynolds stress. In particular studies and Simone Sarkar et al., a wide range of initial values of the parameters of the problem are covered. The observation of Sarkar was confirmed by the study of Simone et al. (1997,“The Effect of Compressibility on Turbulent Shear Flow: A Rapid Distortion Theory and Direct Numerical Simulation Study,” J. Fluid Mech., 330, p. 307;“Etude Théorique et Simulation Numérique de la Turbulence Compressible en Présence de Cisaillement où de Variation de Volume à Grande Échelle” thése, École Centrale de Lyon, France). We will then use the data provided by the direct simulations of Simone to discuss the implications for modeling to second order. The performance of different variants of the modeling results will be compared with DNS results.


Sign in / Sign up

Export Citation Format

Share Document