Analysis of Multiholed Orthotropic Laminated Plates by the Boundary-Point-Least-Squares Method

1975 ◽  
Vol 97 (2) ◽  
pp. 118-122 ◽  
Author(s):  
S. G. Sampath ◽  
L. E. Hulbert

The paper describes the application of boundary-point-least-squares method (BPLS) for the determination of stresses in multiply connected finite orthotropic plates under plane stress. Series solutions composed of mapping functions are employed. Numerical solutions presented include the case of an orthotropic plate with an elliptical hole with orientation noncoincident with the material axes.

1974 ◽  
Vol 96 (3) ◽  
pp. 214-219 ◽  
Author(s):  
L. E. Hulbert ◽  
S. G. Sampath

The paper describes the application of the boundary-point-least-squares method (BPLS) to the determination of the two-dimensional temperatures and thermal stresses in composite multiply connected domains. Series solutions are first determined for the steady-state temperatures. Using these temperature solutions, the solution to the thermally-induced stresses is automatically found in terms of Airy stress function series. Applications are described which illustrate use of the method in specific problems.


1964 ◽  
Vol 54 (6A) ◽  
pp. 2037-2047
Author(s):  
Agustin Udias

abstract In this paper a numerical approach to the determination of focal mechanisms based on the observation of the polarization of the S wave at N stations is presented. Least-square methods are developed for the determination of the orientation of the single and double couple sources. The methods allow a statistical evaluation of the data and of the accuracy of the solutions.


BIOMATH ◽  
2016 ◽  
Vol 5 (1) ◽  
pp. 1604231
Author(s):  
A.N. Pete ◽  
Peter Mathye ◽  
Igor Fedotov ◽  
Michael Shatalov

An inverse numerical method that estimate parameters of dynamic mathematical models given some information about unknown trajectories at some time is applied to examples taken from Biology and Ecology. The method consisting of determining an over-determined system of algebraic equations using experimental data. The solution of the over-determined system is then obtained using, for example the least-squares method. To illustrate the effectiveness of the method an analysis of examples and corresponding numerical example are presented.


Vestnik MGSU ◽  
2015 ◽  
pp. 140-151 ◽  
Author(s):  
Aleksey Alekseevich Loktev ◽  
Daniil Alekseevich Loktev

In modern integrated monitoring systems and systems of automated control of technological processes there are several essential algorithms and procedures for obtaining primary information about an object and its behavior. The primary information is characteristics of static and moving objects: distance, speed, position in space etc. In order to obtain such information in the present work we proposed to use photos and video detectors that could provide the system with high-quality images of the object with high resolution. In the modern systems of video monitoring and automated control there are several ways of obtaining primary data on the behaviour and state of the studied objects: a multisensor approach (stereovision), building an image perspective, the use of fixed cameras and additional lighting of the object, and a special calibration of photo or video detector.In the present paper the authors develop a method of determining the distances to objects by analyzing a series of images using depth evaluation using defocusing. This method is based on the physical effect of the dependence of the determined distance to the object on the image from the focal length or aperture of the lens. When focusing the photodetector on the object at a certain distance, the other objects both closer and farther than a focal point, form a spot of blur depending on the distance to them in terms of images. Image blur of an object can be of different nature, it may be caused by the motion of the object or the detector, by the nature of the image boundaries of the object, by the object’s aggregate state, as well as by different settings of the photo-detector (focal length, shutter speed and aperture).When calculating the diameter of the blur spot it is assumed that blur at the point occurs equally in all directions. For more precise estimates of the geometrical parameters determination of the behavior and state of the object under study a statistical approach is used to determine the individual parameters and estimate their accuracy. A statistical approach is used to evaluate the deviation of the dependence of distance from the blur from different types of standard functions (logarithmic, exponential, linear). In the statistical approach the evaluation method of least squares and the method of least modules are included, as well as the Bayesian estimation, for which it is necessary to minimize the risks under different loss functions (quadratic, rectangular, linear) with known probability density (we consider normal, lognormal, Laplace, uniform distribution). As a result of the research it was established that the error variance of a function, the parameters of which are estimated using the least squares method, will be less than the error variance of the method of least modules, that is, the evaluation method of least squares is more stable. Also the errors’ estimation when using the method of least squares is unbiased, whereas the mathematical expectation when using the method of least modules is not zero, which indicates the displacement of error estimations. Therefore it is advisable to use the least squares method in the determination of the parameters of the function.In order to smooth out the possible outliers we use the Kalman filter to process the results of the initial observations and evaluation analysis, the method of least squares and the method of least three standard modules for the functions after applying the filter with different coefficients.


2019 ◽  
Vol 54 (8) ◽  
pp. 1093-1106
Author(s):  
Shen-Haw Ju ◽  
Wen-Yu Liang ◽  
Hsin-Hsiang Hsu ◽  
Jiann-Quo Tarn

This paper develops a Hamiltonian state space approach for analytic determination of deformation and stress fields in multilayered monoclinic angle-ply laminates under the combined action of extension, bending, and torsion. The present solution satisfies the equations of anisotropic elasticity, the end conditions, the traction-free boundary conditions on the four edge surfaces of the rectangular section, and the interfacial continuity conditions in multilayered laminates. The proposed method only requires the solutions of matrix and eigen equations, regardless of the number or lamination of the layers. The finite element analyses are used to validate the accuracy of the analysis. The analytical solution and the numerical solutions are in excellent agreement.


1970 ◽  
Vol 26 (2) ◽  
pp. 295-296 ◽  
Author(s):  
K. Tichý

An appropriate choice of the function minimized permits linearization of the least-squares determination of the matrix which transforms the diffraction indices into the components of the reciprocal vector in the diffractometer φ-axis system of coordinates. The coefficients of the least-squares equations are based on diffraction indices and measured diffractometer angles of three or more non-coplanar setting reflexions.


Sign in / Sign up

Export Citation Format

Share Document