An Analytical Study of Laminar Film Condensation: Part 2—Single and Multiple Horizontal Tubes

1961 ◽  
Vol 83 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Michael Ming Chen

The boundary-layer equations for laminar film condensation are solved for (a) a single horizontal tube, and (b) a vertical bank of horizontal tubes. For the single-tube case, the inertia effects are included and the vapor is assumed to be stationary outside the vapor boundary layer. Velocity and temperature profiles are obtained for the case μvρv/μρ ≪ 1 and similarity is found to exist exactly near the top stagnation point, and approximately for the most part of the tube. Heat-transfer results computed with these similar profiles are presented and discussed. For the multiple-tube case, the analysis includes the effect of condensation between tubes, which is shown to be partly responsible for the high observed heat-transfer rate for vertical tube banks. The inertia effects are neglected due to the insufficiency of boundary-layer theory in this case. Heat-transfer coefficients are presented and compared with experiments. The theoretical results for both cases are also presented in approximate formulas for ease of application.

1961 ◽  
Vol 83 (1) ◽  
pp. 48-54 ◽  
Author(s):  
Michael Ming Chen

The boundary-layer equations of momentum and energy are written in a modified integral form and solved for the case of laminar film condensation along a vertical flat plate. The analysis differs from previous works by employing the more realistic boundary condition of stationary vapor at large distances instead of zero velocity gradient at the interface. Solutions for both the liquid film and vapor boundary layer are given for the case μvρv ≪ μρ. Velocity and temperature profiles are obtained using perturbation method and the modified integral boundary-layer equations. The results show a significant negative velocity gradient at the interface as a result of vapor drag except for small values of kΔt/μλ. Theoretical heat-transfer coefficients are computed and found to be lower than previous theories, especially for low Prandtl numbers. Comparison with experimental heat-transfer data is given. The heat-transfer results are also presented in the form of an approximate formula for ease of application.


1959 ◽  
Vol 81 (1) ◽  
pp. 13-18 ◽  
Author(s):  
E. M. Sparrow ◽  
J. L. Gregg

The problem of laminar-film condensation on a vertical plate is attacked using the mathematical techniques of boundary-layer theory. Starting with the boundary-layer (partial differential) equations, a similarity transformation is found which reduces them to ordinary differential equations. Energy-convection and fluid-acceleration terms are fully accounted for. Solutions are obtained for values of the parameter cpΔT/hfg between 0 and 2 for Prandtl numbers between 1 and 100. These solutions take their place in the boundary-layer family along with those of Blasius, Pohlhausen, Schmidt and Beckmann, and so on. Heat-transfer results are presented. It is found that the Prandtl-number effect, which arises from retention of the acceleration terms, is very small for Prandtl numbers greater than 1.0. Low Prandtl number (0.003–0.03) heat-transfer results are given in Appendix 2, and a greater effect of the acceleration terms is displayed.


2011 ◽  
Vol 241 (7) ◽  
pp. 2544-2548 ◽  
Author(s):  
Dong Eok Kim ◽  
Ki Hoon Yang ◽  
Kyung Won Hwang ◽  
Young Ho Ha ◽  
Moo Hwan Kim

10.2514/3.931 ◽  
1997 ◽  
Vol 11 ◽  
pp. 526-532
Author(s):  
V. R. Murthy ◽  
Yu-An Lin ◽  
Steven W. O' ◽  
Hara Har ◽  
Sheng-An Yang

Sign in / Sign up

Export Citation Format

Share Document