Improved Three-Dimensional Crowning Profiles for Dovetail Attachments

Author(s):  
J. R. Beisheim ◽  
G. B. Sinclair

Dovetail attachments in gas turbines are subject to fatigue failures. These fatigue failures occur as a result of large fluctuations in hoop stresses near the edges of contact in attachments. The high hoop stresses available for fluctuating are, in turn, the result of high contact stress peaks near the edges of contact. One means of alleviating these stresses is via crowning. Such crowned configurations are inherently three-dimensional and consequently present some challenges to obtaining convergent contact stresses with finite elements. Such challenges are met in the work of Beisheim and Sinclair (2008, “Three-Dimensional Finite Element Analysis of Dovetail Attachments With and Without Crowning,” ASME J. Turbomach., 130, pp. 021012-1–021021-8), and crowning is shown to reduce contact stresses by about 40%. The crowning profile used in that paper is the natural Hertzian profile of a segment of an ellipsoid. This note investigates an alternative profile with a view to increasing the area of contact, and thereby further reducing contact stresses. Converged contact stresses are obtained for both profiles, and demonstrate that the alternative profile can indeed reduce contact stresses by an additional 10%.

2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2021 ◽  
Vol 11 (3) ◽  
pp. 1220
Author(s):  
Azeem Ul Yaqin Syed ◽  
Dinesh Rokaya ◽  
Shirin Shahrbaf ◽  
Nicolas Martin

The effect of a restored machined hybrid dental ceramic crown–tooth complex is not well understood. This study was conducted to determine the effect of the stress state of the machined hybrid dental ceramic crown using three-dimensional finite element analysis. Human premolars were prepared to receive full coverage crowns and restored with machined hybrid dental ceramic crowns using the resin cement. Then, the teeth were digitized using micro-computed tomography and the teeth were scanned with an optical intraoral scanner using an intraoral scanner. Three-dimensional digital models were generated using an interactive image processing software for the restored tooth complex. The generated models were imported into a finite element analysis software with all degrees of freedom concentrated on the outer surface of the root of the crown–tooth complex. To simulate average occlusal load subjected on a premolar a total load of 300 N was applied, 150 N at a buccal incline of the palatal cusp, and palatal incline of the buccal cusp. The von Mises stresses were calculated for the crown–tooth complex under simulated load application was determined. Three-dimensional finite element analysis showed that the stress distribution was more in the dentine and least in the cement. For the cement layer, the stresses were more concentrated on the buccal cusp tip. In dentine, stress was more on the cusp tips and coronal 1/3 of the root surface. The conventional crown preparation is a suitable option for machined polymer crowns with less stress distribution within the crown–tooth complex and can be a good aesthetic replacement in the posterior region. Enamic crowns are a good viable option in the posterior region.


Sign in / Sign up

Export Citation Format

Share Document