Active Position and Vibration Control of a Flexible Links Mechanism Using Model-Based Predictive Control

Author(s):  
Paolo Boscariol ◽  
Alessandro Gasparetto ◽  
Vanni Zanotto

In order to develop an efficient and fast position control for robotic manipulators, vibration phenomena have to be taken into account. Vibrations are mainly caused by the flexibility of manipulator linkages, especially when dealing with high-speed and lightweight robots. In this paper, a constrained model-based predictive control is employed for controlling both position and vibrations in a mechanism with high link flexibility. This kind of controller has so far been used mainly to control slow processes, but here simulation results that show its effectiveness in dealing with high-speed and nonlinear processes are presented. The mechanism chosen to evaluate the performances is a four-link closed chain mechanism laying on the horizontal plane and driven by a single torque-controlled electric motor.

1981 ◽  
Vol 103 (3) ◽  
pp. 643-651 ◽  
Author(s):  
W. Sunada ◽  
S. Dubowsky

An analytical method is presented for the dynamics of spatial mechanisms containing complex-shaped, flexible links with application to both high-speed industrial machines and robotic manipulators. Existing NASTRAN-type finite element structural analysis programs are combined with 4 × 4 matrix dynamic analysis techniques and Component Mode Synthesis coordinate reduction to yield a procedure capable of analyzing complex, non-linear spatial mechanisms with irregularly shaped links in great detail, yet producing a system of equations small enough for efficient numerical integration. The method is applied to two examples.


Author(s):  
Won Young Kim ◽  
Kishore Pochiraju

As 3D printing technology becomes more ubiquitous and pervasive, printed robot structures are likely to become popular. However, these 3D printed structures have inherent flexibility which causes link deflections and vibrations that lead to difficulties in maintaining gait and produce instabilities during motion. In this paper a biped robot, realized with 3D printing techniques, was modeled and its gait was simulated under position control. Spring and damper elements are used within powered joints to model the link flexibility. Servos were placed at the joints and an open-loop gait trajectory was executed by posing the robot through a series of servo angles. The gait of the printed robot was designed using the model. The printed robot’s stability and accelerations during the motion were characterized with 3-axis accelerometers and gyroscopes mounted on the robot. The acceleration measurements from the printed robot are then compared with the model behavior.


2012 ◽  
Vol 5 (2) ◽  
pp. 153-158 ◽  
Author(s):  
Juraj Oravec ◽  
Monika Bakošová

Abstract The paper addresses a case study of robust stabilization of a continuous stirred tank reactor using robust model-based predictive control with constrained input variables. One exothermic reaction runs in the reaction mixture and the reactor is modelled in the form of an uncertain polytopic system. The control approach is based on solution of a set of linear matrix inequalities. This formulation enables to use convex optimization methods to design a gain matrix of a state feedback controller in each control step. The task of stabilization is solved in assumed control conditions with respect to symmetric constraints on control inputs. The control performance achieved by robust constrained model-based predictive control is studied via simulations. Obtained results confirm that the robust constrained model-based predictive control ensures the stability demands and the quality requirements represented by chosen quadratic cost function.


Sign in / Sign up

Export Citation Format

Share Document