Design and Testing of a Thin-Flexure Bistable Mechanism Suitable for Stamping From Metal Sheets

2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Benjamin Todd ◽  
Brian D. Jensen ◽  
Stephen M. Schultz ◽  
Aaron R. Hawkins

We present a new technique for fabricating compliant mechanisms from stamped metal sheets. The concept works by providing thinned segments to allow rotation of flexural beams 90 deg about their long axis, effectively providing a flexure as wide as the sheet’s thickness. The method is demonstrated with the design and fabrication of a metal bistable mechanism for use as a threshold accelerometer. A new model based on elliptic integral solutions is presented for bistable mechanisms incorporating long, thin flexures. The resulting metal bistable mechanisms are tested for acceleration threshold sensing using a drop test and a vibration test. The mechanisms demonstrate very little variation due to stress relaxation or temperature effects. The force-displacement behavior of a mechanism is also measured. The mechanisms’ switching force is less than the designed value because of out-of-plane motion and dynamic effects.

2019 ◽  
Vol 141 (9) ◽  
Author(s):  
N. Lobontiu ◽  
T. Gress ◽  
M. Gh. Munteanu ◽  
B. Ilic

This research proposes the self-similarity design concept of flexible mechanisms by studying the out-of-plane, piston motion of a compliant device. Self-similar compliant mechanisms can be formed by connecting flexible units of scaled-down, identical geometry in series and/or parallel. We study a folded-architecture, compact mechanism class formed of multiple flexible, circular, and concentric segments that are serially connected. The device is capable of producing large displacements by summing the small deformations of its units. A simple analytical model is derived, which predicts the mechanism piston compliance/stiffness in terms of configuration, geometry, and material parameters. Experimental testing of a prototype and finite element simulation of various designs confirm the validity of the mathematical model. Several particular designs resulting from the generic architecture are further characterized based on the analytical model to highlight the mechanism stiffness performance and the way it scales with its defining parameters and unit stiffness.


2007 ◽  
Vol 1052 ◽  
Author(s):  
Joseph Choueifati ◽  
Craig Lusk ◽  
Xialou Pang ◽  
Alex A. Volinsky

AbstractLarge out-of-plane displacements can be achieved when compliant mechanisms are utilized in MEMS. While mathematical and macroscopic modeling is helpful in building original designs, the actual MEMS device motion needs to be characterized in terms of the forces and displacements. A nanoindentation apparatus equipped with Berkovich diamond tip was used in an attempt to actuate and characterize the motion of the Bistable Spherical Compliant Micromechanism with a nonlinear (approximately cubic) mechanical response. Based on the obtained lateral force-displacement data it was concluded that the Berkovich diamond tip was too sharp, thus cutting through the polysilicon material of the MEMS device.


Author(s):  
Adarsh Mavanthoor ◽  
Ashok Midha

Significant reduction in cost and time of bistable mechanism design can be achieved by understanding their bistable behavior. This paper presents bistable compliant mechanisms whose pseudo-rigid-body models (PRBM) are four-bar mechanisms with a torsional spring. Stable and unstable equilibrium positions are calculated for such four-bar mechanisms, defining their bistable behavior for all possible permutations of torsional spring locations. Finite Element Analysis (FEA) and simulation is used to illustrate the bistable behavior of a compliant mechanism with a straight compliant member, using stored energy plots. These results, along with the four-bar and the compliant mechanism information, can then be used to design a bistable compliant mechanism to meet specified requirements.


2003 ◽  
Vol 125 (5) ◽  
pp. 895-901 ◽  
Author(s):  
Michael G. Olsen ◽  
Chris J. Bourdon

In microscopic particle image velocimetry (microPIV) experiments, the entire volume of a flowfield is illuminated, resulting in all of the particles in the field of view contributing to the image. Unlike in light-sheet PIV, where the depth of the measurement volume is simply the thickness of the laser sheet, in microPIV, the measurement volume depth is a function of the image forming optics of the microscope. In a flowfield with out-of-plane motion, the measurement volume (called the depth of correlation) is also a function of the magnitude of the out-of-plane motion within the measurement volume. Equations are presented describing the depth of correlation and its dependence on out-of-plane motion. The consequences of this dependence and suggestions for limiting its significance are also presented. Another result of the out-of-plane motion is that the height of the PIV signal peak in the correlation plane will decrease. Because the height of the noise peaks will not be affected by the out-of-plane motion, this could lead to erroneous velocity measurements. An equation is introduced that describes the effect of the out-of-plane motion on the signal peak height, and its implications are discussed. Finally, the derived analytical equations are compared to results calculated using synthetic PIV images, and the agreement between the two is seen to be excellent.


1992 ◽  
Vol 96 (10) ◽  
pp. 7229-7236 ◽  
Author(s):  
Marek Z. Zgierski ◽  
Francesco Zerbetto ◽  
Young‐Dong Shin ◽  
Edward C. Lim

1998 ◽  
Vol 120 (3) ◽  
pp. 392-400 ◽  
Author(s):  
A. Saxena ◽  
S. N. Kramer

Compliant members in flexible link mechanisms undergo large deflections when subjected to external loads. Because of this fact, traditional methods of deflection analysis do not apply. Since the nonlinearities introduced by these large deflections make the system comprising such members difficult to solve, parametric deflection approximations are deemed helpful in the analysis and synthesis of compliant mechanisms. This is accomplished by representing the compliant mechanism as a pseudo-rigid-body model. A wealth of analysis and synthesis techniques available for rigid-body mechanisms thus become amenable to the design of compliant mechanisms. In this paper, a pseudo-rigid-body model is developed and solved for the tip deflection of flexible beams for combined end loads. A numerical integration technique using quadrature formulae has been employed to solve the large deflection Bernoulli-Euler beam equation for the tip deflection. Implementation of this scheme is simpler than the elliptic integral formulation and provides very accurate results. An example for the synthesis of a compliant mechanism using the proposed model is also presented.


1995 ◽  
Vol 117 (1) ◽  
pp. 156-165 ◽  
Author(s):  
L. L. Howell ◽  
A. Midha

Geometric nonlinearities often complicate the analysis of systems containing large-deflection members. The time and resources required to develop closed-form or numerical solutions have inspired the development of a simple method of approximating the deflection path of end-loaded, large-deflection cantilever beams. The path coordinates are parameterized in a single parameter called the pseudo-rigid-body angle. The approximations are accurate to within 0.5 percent of the closed-form elliptic integral solutions. A physical model is associated with the method, and may be used to simplify complex problems. The method proves to be particularly useful in the analysis and design of compliant mechanisms.


Sign in / Sign up

Export Citation Format

Share Document