Bistable Compliant Four-Bar Mechanisms With a Single Torsional Spring

Author(s):  
Adarsh Mavanthoor ◽  
Ashok Midha

Significant reduction in cost and time of bistable mechanism design can be achieved by understanding their bistable behavior. This paper presents bistable compliant mechanisms whose pseudo-rigid-body models (PRBM) are four-bar mechanisms with a torsional spring. Stable and unstable equilibrium positions are calculated for such four-bar mechanisms, defining their bistable behavior for all possible permutations of torsional spring locations. Finite Element Analysis (FEA) and simulation is used to illustrate the bistable behavior of a compliant mechanism with a straight compliant member, using stored energy plots. These results, along with the four-bar and the compliant mechanism information, can then be used to design a bistable compliant mechanism to meet specified requirements.

Author(s):  
M. M. Sawant ◽  
P. R. Anerao

To reduce fatigue failure of compliant mechanism, it is necessary to design and analyze the flexure hinge parametrically. A methodology to design a flexural hinges for compliant mechanism is proposed in this paper to improve fatigue life. Results obtained by finite element analysis shows that used design equations are reliable and easier to be used in the design of such proportion flexural hinges. The proposed analytical model gives a new viewpoint on the design of circular flexure hinge based compliant mechanisms. Circular flexural joint was manufactured by using Al 6061 T6 material and experimental setup is developed to test this flexural hinge. Results obtained by FEA were found to be in good correlation with experimental results. The variation in the results can be attributed to variation in properties of material, actual dimensions of setup etc.


Author(s):  
Giovanni Berselli ◽  
Rocco Vertechy ◽  
Gabriele Vassura ◽  
Vincenzo Parenti Castelli

The interest in actuators based on dielectric elastomer films as a promising technology in robotic and mechatronic applications is increasing. The overall actuator performances are influenced by the design of both the active film and the film supporting frame. This paper presents a single-acting actuator which is capable of supplying a constant force over a given range of motion. The actuator is obtained by coupling a rectangular film of silicone dielectric elastomer with a monolithic frame designed to suitably modify the force generated by the dielectric elastomer film. The frame is a fully compliant mechanism whose main structural parameters are calculated using a pseudo-rigid-body model and then verified by finite element analysis. Simulations show promising performance of the proposed actuator.


2021 ◽  
pp. 1-14
Author(s):  
Xiaodong Chen ◽  
ZM Xie ◽  
Huifeng Tan

Abstract How to enlarge the output displacement is a key issue in the research field of microgrippers. It is difficult to further enlarge the output displacement for the traditional displacement transmission mechanism (DTM). In this research, a two-stage amplification cylinder-driven DTM based on the compliant mechanisms is designed to realize the displacement output expansion. The opening and closing of the clamping jaws is driven by the air cylinder to enlarge the output displacement of the microgripper. According to the analysis of statics model of the mechanism, the relationship between the output displacement of the microgripper and the driving pressure of the cylinder is established. The magnification of the microgripper is obtained using a dynamic model. Moreover, based on the finite element analysis, the mechanical structure parameters are optimized. The microgripper was fabricated by utilizing wire electro discharge machining (WEDM) technique, and then a series of experiments were carried out to obtain the relationship between the displacement and the driving pressure. It is found that the maximum output displacement measured is 1190.4μm under the pressure of 0-0.6 Mpa, corresponding to the magnification of 47.63. Compared with the results of finite element analysis and theoretical calculation, the test results have a discrepancy of 2.39% and 6.62%, respectively. The microgripper has successfully grasped a variety of micro-parts with irregular shapes, and parallel grasping can be achieved, demonstrating the potential application of this design in the field of micromanipulation.


Author(s):  
Qiaoling Meng ◽  
Giovanni Berselli ◽  
Rocco Vertechy ◽  
Vincenzo Parenti Castelli

Monolithic Flexure-based Compliant Mechanisms (MFCM) can functionally act as nonlinear springs by providing a desired load-displacement profile at one point on their structure. Once the MFCM topology is chosen, these particular springs can be conveniently synthesized by resorting to the well-known Pseudo-Rigid-Body approximation, whose accuracy strongly depends on the modeling precision of the flexures’ principal compliance. For various types of flexures, closed-form solutions have been proposed which express the compliance factors as functions of the flexure dimensions. Nonetheless, the reliability of these analytical relations is limited to slender, beam-like, hinges undergoing small deflections. In order to overcome such limitations, this paper provides empirical equations, derived from finite element analysis, that can be used for the optimal design of circular, elliptical, and corner-filleted flexural hinges with general aspect ratios on the basis of both principal compliance and maximum bearable stress. As a case study, a nonlinear spring conceived as a four-bar linkage MFCM is synthesized and simulated by means of finite element analysis. Numerical results confirm that the aforementioned empirical equations outperform their analytical counterparts when modeling thick cross-section hinges undergoing large deflections.


2016 ◽  
Vol 681 ◽  
pp. 100-116
Author(s):  
Georgios A. Drosopoulos ◽  
Nikolaos Kaminakis ◽  
Nikoletta Papadogianni ◽  
Georgios E. Stavroulakis

The design of novel mechanical microstructures having auxetic behaviour is proposed in this paper using techniques of topology optimization for compliant mechanisms. The resulting microstructure can be modified in order to cover additional needs, not included in the topology optimization formulation. Classical structural optimization, contact mechanics, homogenization and nonlinear finite element analysis are used for this step. Thus, the modified microstructure or composite is studied with numerical homogenization in order to verify that it still has the wished auxetic behaviour. Finally, nonlinear finite element analysis shows how the auxetic behaviour is influenced by unilateral contact between the constituent materials, large displacements and elastoplasticity.


Author(s):  
Guangbo Hao ◽  
John Mullins

Bistable mechanisms have two stable positions and their characteristic analysis is much harder than the traditional spring system due to their postbuckling behaviour. As the strong nonlinearity induced by the postbuckling, it is difficult to establish a correct model to reveal the comprehensive nonlinear characteristics. This paper deals with the in-plane comprehensive static analysis of a translational bistable mechanism using nonlinear finite element analysis. The bistable mechanism consists of a pair of fixed-clamped inclined beams in symmetrical arrangement, which is a monolithic design and works within the elastic deformation domain. The displacement-controlled finite element analysis method using Strand7 is first discussed. Then the force–displacement relation of the bistable mechanism along the primary motion direction is described followed by the detailed primary translational analysis for different parameters. A simple analytical (empirical) equation for estimating the negative stiffness is obtained, and experimental testing is performed for a case study. It is concluded that (a) the negative stiffness magnitude has no influence from the inclined angle, but is proportional to the product of the Young’s modulus, beam depth, and cubic ratio for in-plane thickness to the beam length; (b) the unstable position is proportional to the product of the beam length and the Sine function of the inclined angle, and is not affected by the in-plane thickness and the material (or the out-of-plane thickness). The in-plane off-axis (translational and rotational) stiffness is further analysed to show the stiffness changes over the primary motion and the off-axis motion, and a negative rotational stiffness domain has been obtained.


2004 ◽  
Vol 126 (4) ◽  
pp. 657-666 ◽  
Author(s):  
Brian D. Jensen ◽  
Larry L. Howell

Bistable mechanical devices remain stable in two distinct positions without power input. They find application in valves, switches, closures, and clasps. Mechanically bistable behavior results from the storage and release of energy, typically in springs, with stable positions occurring at local minima of stored energy. Compliant mechanisms offer an elegant way to achieve this behavior by incorporating both motion and energy storage into the same flexible element. Interest in compliant bistable mechanisms has also recently increased because of the advantages of bistable behavior in many micro-electro-mechanical systems (MEMS). Design of compliant or rigid-body bistable mechanisms typically requires simultaneous consideration of both energy storage and motion requirements. This paper simplifies this process by developing theory that provides prior knowledge of mechanism configurations that guarantee bistable behavior. Configurations which include one or more translational, or slider, joints are studied in this work. Several different mechanism types are analyzed to determine compliant segment placement that will ensure bistable mechanism operation. Examples demonstrate the power of the theory in design.


Author(s):  
Young Seok Oh ◽  
Sridhar Kota

Our research investigates a new approach to design of bistable compliant mechanisms using the bistability of a clamped-free beam. Bistability plays an important role for a variety of applications since energy is applied only to move the mechanism from one stable position to another and no energy needs to be expended once a stable position is reached. Behavior of a bistable compliant mechanism, in general, is highly non-linear and relies on the buckling phenomenon. Normally, buckling is very sensitive to imperfections in manufacturing processes, operating conditions and boundary conditions. We present a method for designing bistable mechanisms that are robust against such imperfections by utilizing the behavior of a simple clamped-free beam. A solution for large deformation of a simple clamped-free beam is first obtained to study its bistable behavior under various loading conditions. If the load is greater than the critical buckling load, the beam can be deflected not only in the normal direction but also in a ‘reverse-lateral’ (RL) direction. First, an initially straight beam must be bent to a certain curvature under the action of the applied force. In the second loading condition, the partially bent beam is further loaded so that it buckles in the RL direction into a stable position. The magnitude and direction of the forces in both loading conditions that are conducive to bistability are thus determined. A compliant mechanism is then designed such that its output generates desired forces on the beam to deform it in the RL direction. We demonstrate that the RL deformation is less sensitive to the imperfections and ensures bistable behavior. Using clamped-pinned beams, two design examples (symmetric and asymmetric cases) of bistable compliant mechanisms are presented. Results show very good correlation between the finite element analysis and experimental tests on prototypes.


2020 ◽  
pp. 1-11
Author(s):  
Xueao Liu ◽  
J. Michael McCarthy

Abstract This paper presents a design methodology for mechanisms consisting of a single continuous structure, continuum mechanisms, that blends the kinematic synthesis of rigid-body mechanisms with topology optimization for compliant mechanisms. Rather than start with a generic structure that is shaped to achieve a required force deflection task for a compliant mechanism, our approach shapes the initial structure based on kinematic synthesis of a rigid body mechanism for the required movement, then the structure is shaped using Finite Element Analysis to achieve the required force deflection relationship. The result of this approach is a continuum mechanism with the same workpiece movement as the rigid link mechanism when actuated. An example illustrates the design process to obtain an eight-bar linkage that guides its workpiece in straight-line rectilinear movement. We show that the resulting continuum mechanism provides the desired rectilinear movement. A 210 mm physical model machined from Nylon-6 is shown to achieve 21.5mm rectilinear movement with no perceived deviation from a straight-line.


Sign in / Sign up

Export Citation Format

Share Document