Effect of Density Ratio on Flat Plate Film Cooling With Shaped Holes Using PSP

2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Lesley M. Wright ◽  
Stephen T. McClain ◽  
Michael D. Clemenson

Detailed film-cooling effectiveness distributions are obtained on a flat plate using the pressure sensitive paint (PSP) technique. The applicability of the PSP technique is expanded to include a coolant-to-mainstream density ratio of 1.4. The effect of density ratio on the film-cooling effectiveness is coupled with varying blowing ratio (M=0.25–2.0), freestream turbulence intensity (Tu=1–12.5%), and film hole geometry. The effectiveness distributions are obtained on three separate flat plates containing either simple angle, cylindrical holes, simple angle, fanshaped holes (α=10 deg), or simple angle, laidback, fanshaped holes (α=10 deg and γ=10 deg). In all three cases, the film-cooling holes are angled at θ=35 deg from the mainstream flow. Using the PSP technique, the combined effects of blowing ratio, turbulence intensity, and density ratio are captured for each film-cooling geometry. The detailed film-cooling effectiveness distributions, for cylindrical holes, clearly show that the effectiveness at the lowest blowing ratio is enhanced at the lower density ratio (DR=1). However, as the blowing ratio increases, a transition occurs, leading to increased effectiveness with the elevated density ratio (DR=1.4). In addition, the PSP technique captures an upstream shift of the coolant jet reattachment point as the density ratio increases or the turbulence intensity increases (at moderate blowing ratios for cylindrical holes). With the decreased momentum of the shaped film-cooling holes, the greatest film-cooling effectiveness is obtained at the lower density ratio (DR=1.0) over the entire range of blowing ratios considered. In all cases, as the freestream turbulence intensity increases, the film effectiveness decreases; this effect is reduced as the blowing ratio increases for all three film hole configurations.

Author(s):  
Lesley M. Wright ◽  
Stephen T. McClain ◽  
Michael D. Clemenson

Detailed film cooling effectiveness distributions are obtained on a flat plate using the pressure sensitive paint (PSP) technique. The applicability of the PSP technique is expanded to include a coolant-to-mainstream density ratio of 1.4. The effect of density ratio on the film cooling effectiveness is coupled with varying blowing ratio (M = 0.25–2.0), freestream turbulence intensity (Tu = 1%–12.5%), and film hole geometry. The effectiveness distributions are obtained on three separate flat plates containing either simple angle, cylindrical holes, simple angle, fanshaped holes (α = 10°), or simple angle, laidback, fanshaped holes (α = 10°, γ = 10°). In all three cases, the film cooling holes are angled at θ = 35° from the mainstream flow. Using the PSP technique, the combined effects of blowing ratio, turbulence intensity, and density ratio are captured for each film cooling geometry. The detailed film cooling effectiveness distributions, for cylindrical holes, clearly show the effectiveness at the lowest blowing ratio is enhanced at the lower density ratio (DR = 1). However, as the blowing ratio increases, a transition occurs, leading to increased effectiveness with the elevated density ratio (DR = 1.4). In addition, the PSP technique captures an upstream shift of the coolant jet reattachment point as the density ratio increases or the turbulence intensity increases (at moderate blowing ratios for cylindrical holes). With the decreased momentum of the shaped film cooling holes, the greatest film cooling effectiveness is obtained at the lower density ratio (DR = 1.0) over the entire range of blowing ratios considered. In all cases, as the freestream turbulence intensity increases, the film effectiveness decreases; this effect is reduced as the blowing ratio increases for all three film hole configurations.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Nian Wang ◽  
Mingjie Zhang ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

This study investigates the effects of blowing ratio, density ratio, and spanwise pitch on the flat plate film cooling from two rows of compound angled cylindrical holes. Two arrangements of two-row compound angled cylindrical holes are tested: (a) the first row and the second row are oriented in staggered and same compound angled direction (β = +45 deg for the first row and +45 deg for the second row); (b) the first row and the second row are oriented in inline and opposite direction (β = +45 deg for the first row and −45 deg for the second row). The cooling hole is 4 mm in diameter with an inclined angle of 30 deg. The streamwise row-to-row spacing is fixed at 3d, and the spanwise hole-to-hole (p) is varying from 4d, 6d to 8d for both designs. The film cooling effectiveness measurements were performed in a low-speed wind tunnel in which the turbulence intensity is kept at 6%. There are 36 cases for each design including four blowing ratios (M = 0.5, 1.0, 1.5, and 2.0), three density ratios (DR = 1.0, 1.5, and 2.0), and three hole-to-hole spacing (p/d = 4, 6, and 8). The detailed film cooling effectiveness distributions were obtained by using the steady-state pressure-sensitive paint (PSP) technique. The spanwise-averaged cooling effectiveness are compared over the range of flow parameters. Some interesting observations are discovered including blowing ratio effect strongly depending on geometric design; staggered arrangement of the hole with same orientation does not yield better effectiveness at higher blowing ratio. Currently, film cooling effectiveness correlation of two-row compound angled cylindrical holes is not available, so this study developed the correlations for the inline arrangement of holes with opposing angles and the staggered arrangement of holes with same angles. The results and correlations are expected to provide useful information for the two-row flat plate film cooling analysis.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Jiaxu Yao ◽  
Jin Xu ◽  
Ke Zhang ◽  
Jiang Lei ◽  
Lesley M. Wright

The interaction of flow and film-cooling effectiveness between jets of double-jet film-cooling (DJFC) holes on a flat plate is studied experimentally. The time-averaged flow field in several axial positions (X/d = −2.0, 1.0, and 5.0) is obtained through a seven-hole probe. The downstream film-cooling effectiveness on the flat plate is measured by pressure sensitive paint (PSP). The inclination angle (θ) of all the holes is 35 deg, and the compound angle (β) is ±45 deg. Effects of the spanwise distance (p = 0, 0.5d, 1.0d, 1.5d, and 2.0d) between the two interacting jets of DJFC holes are studied, while the streamwise distance (s) is kept as 3d. The blowing ratio (M) varies as 0.5, 1.0, 1.5, and 2.0. The density ratio (DR) is maintained at 1.0. Results show that the interaction between the two jets of DJFC holes has different effects at different spanwise distances. For a small spanwise distance (p/d = 0), the interaction between the jets presents a pressing effect. The downstream jet is pressed down and kept attached to the surface by the upstream one. The effectiveness is not sensitive to blowing ratios. For mid-spanwise distances (p/d = 0.5 and 1.0), the antikidney vortex pair dominates the interaction and pushes both of the jets down, thus leading to better coolant coverage and higher effectiveness. As the spanwise distance becomes larger (p/d ≥ 1.5), the pressing effect almost disappears, and the antikidney vortex pair effect is weaker. The jets separate from each other and the coolant coverage decreases. At a higher blowing ratio, the interaction between the jets of DJFC holes happens later.


Author(s):  
Jiaxu Yao ◽  
Jin Xu ◽  
Ke Zhang ◽  
Jiang Lei ◽  
Lesley M. Wright

The interaction of flow and film-cooling effectiveness between jets of double-jet film-cooling (DJFC) holes on a flat plate is studied experimentally. The time-averaged secondary flow field in several axial positions (X/d = −2.0, 1.0, and 5.0) is obtained through a seven-hole probe. The downstream film-cooling effectiveness on the flat plate is achieved by Pressure Sensitive Paint (PSP). The inclination angle (θ) of all holes is 35°, and the compound angle (β) is ±45°. Effects of spanwise distance (p = 0, 0.5d, 1.0d, 1.5d, 2.0d) between the two interacting jets of DJFC holes are studied while streamwise distance (s) is kept as 3d. The blowing ratio (M) varies as 0.5, 1.0, 1.5, and 2.0. The density ratio (DR) is maintained at 1.0. Results show that the interaction between two jets of DJFC holes has different effects for different spanwise distance. For a small spanwise distance (p/d = 0), the interaction between jets presents a pressing effect. The downstream jet is pressed down and kept attached to the surface by the upstream one. The effectiveness is not sensitive to blowing ratios. For mid spanwise distances (p/d = 0.5 and 1.0), the anti-kidney vortex pair dominates the interaction, and pushes both of the jets down, thus leads to better coolant coverage and higher effectiveness. As spanwise distance becomes larger (p/d≥1.5), the pressing effect almost disappears, and the anti-kidney vortex pair effect is weaker. The jets separate from each other and the coolant coverage decreases. At higher blowing ratio, the interaction between the two jets of DJFC holes moves more downstream.


Author(s):  
Kevin Liu ◽  
Shang-Feng Yang ◽  
Je-Chin Han

A detailed parametric study of film-cooling effectiveness was carried out on a turbine blade platform. The platform was cooled by purge flow from a simulated stator–rotor seal combined with discrete hole film-cooling. The cylindrical holes and laidback fan-shaped holes were accessed in terms of film-cooling effectiveness. This paper focuses on the effect of coolant-to-mainstream density ratio on platform film-cooling (DR = 1 to 2). Other fundamental parameters were also examined in this study—a fixed purge flow of 0.5%, three discrete-hole film-cooling blowing ratios between 1.0 and 2.0, and two freestream turbulence intensities of 4.2% and 10.5%. Experiments were done in a five-blade linear cascade with inlet and exit Mach number of 0.27 and 0.44, respectively. Reynolds number of the mainstream flow was 750,000 and was based on the exit velocity and chord length of the blade. The measurement technique adopted was the conduction-free pressure sensitive paint (PSP) technique. Results indicated that with the same density ratio, shaped holes present higher film-cooling effectiveness and wider film coverage than the cylindrical holes, particularly at higher blowing ratios. The optimum blowing ratio of 1.5 exists for the cylindrical holes, whereas the effectiveness for the shaped holes increases with an increase of blowing ratio. Results also indicate that the platform film-cooling effectiveness increases with density ratio but decreases with turbulence intensity.


Author(s):  
Timothy W. Repko ◽  
Andrew C. Nix ◽  
James D. Heidmann

An advanced, high-effectiveness film-cooling design, the anti-vortex hole (AVH) has been investigated by several research groups and shown to mitigate or counter the vorticity generated by conventional holes and increase film effectiveness at high blowing ratios and low freestream turbulence levels. [1, 2] The effects of increased turbulence on the AVH geometry were previously investigated and presented by researchers at West Virginia University (WVU), in collaboration with NASA, in a preliminary CFD study [3] on the film effectiveness and net heat flux reduction (NHFR) at high blowing ratio and elevated freestream turbulence levels for the adjacent AVH. The current paper presents the results of an extended numerical parametric study, which attempts to separate the effects of turbulence intensity and length-scale on film cooling effectiveness of the AVH. In the extended study, higher freestream turbulence intensity and larger scale cases were investigated with turbulence intensities of 5, 10 and 20% and length scales based on cooling hole diameter of Λx/dm = 1, 3 and 6. Increasing turbulence intensity was shown to increase the centerline, span-averaged and area-averaged adiabatic film cooling effectiveness. Larger turbulent length scales were shown to have little to no effect on the centerline, span-averaged and area-averaged adiabatic film-cooling effectiveness at lower turbulence levels, but slightly increased effect at the highest turbulence levels investigated.


2018 ◽  
Vol 35 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Guangchao Li ◽  
Yukai Chen ◽  
Zhihai Kou ◽  
Wei Zhang ◽  
Guochen Zhang

AbstractThe trunk-branch hole was designed as a novel film cooling concept, which aims for improving film cooling performance by producing anti-vortex. The trunk-branch hole is easily manufactured in comparison with the expanded hole since it consists of two cylindrical holes. The effect of turbulence on the film cooling effectiveness with a trunk-branch hole injection was investigated at the blowing ratios of 0.5, 1.0, 1.5 and 2.0 by numerical simulation. The turbulence intensities from 0.4 % to 20 % were considered. The realizable$k - \varepsilon $turbulence model and the enhanced wall function were used. The more effective anti-vortex occurs at the low blowing ratio of 0.5 %. The high turbulence intensity causes the effectiveness evenly distributed in the spanwise direction. The increase of turbulence intensity leads to a slight decrease of the spanwise averaged effectiveness at the low blowing ratio of 0.5, but a significant increase at the high blowing ratios of 1.5 and 2.0. The optimal blowing ratio of the averaged surface effectiveness is improved from 1.0 to 1.5 when the turbulence intensity increases from 0.4 % to 20 %.


2021 ◽  
Author(s):  
Izhar Ullah ◽  
Sulaiman M. Alsaleem ◽  
Lesley M. Wright ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

Abstract This work is an experimental study of film cooling effectiveness on a blade tip in a stationary, linear cascade. The cascade is mounted in a blowdown facility with controlled inlet and exit Mach numbers of 0.29 and 0.75, respectively. The free stream turbulence intensity is measured to be 13.5 % upstream of the blade’s leading edge. A flat tip design is studied, having a tip gap of 1.6%. The blade tip is designed to have 15 shaped film cooling holes along the near-tip pressure side (PS) surface. Fifteen vertical film cooling holes are placed on the tip near the pressure side. The cooling holes are divided into a 2-zone plenum to locally maintain the desired blowing ratios based on the external pressure field. Two coolant injection scenarios are considered by injecting coolant through the tip holes only and both tip and PS surface holes together. The blowing ratio (M) and density ratio (DR) effects are studied by testing at blowing ratios of 0.5, 1.0, and 1.5 and three density ratios of 1.0, 1.5, and 2.0. Three different foreign gases are used to create density ratio effect. Over-tip flow leakage is also studied by measuring the static pressure distributions on the blade tip using the pressure sensitive paint (PSP) measurement technique. In addition, detailed film cooling effectiveness is acquired to quantify the parametric effect of blowing ratio and density ratio on a plane tip design. Increasing the blowing ratio and density ratio resulted in increased film cooling effectiveness at all injection scenarios. Injecting coolant on the PS and the tip surface also resulted in reduced leakage over the tip. The conclusions from this study will provide the gas turbine designer with additional insight on controlling different parameters and strategically placing the holes during the design process.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Jiaxu Yao ◽  
Jin Xu ◽  
Ke Zhang ◽  
Jiang Lei ◽  
Lesley M. Wright

The film cooling effectiveness distribution and its uniformity downstream of a row of film cooling holes on a flat plate are investigated by pressure sensitive paint (PSP) under different density ratios. Several hole geometries are studied, including streamwise cylindrical holes, compound-angled cylindrical holes, streamwise fan-shape holes, compound-angled fan-shape holes, and double-jet film-cooling (DJFC) holes. All of them have an inclination angle (θ) of 35 deg. The compound angle (β) is 45 deg. The fan-shape holes have a 10 deg expansion in the spanwise direction. For a fair comparison, the pitch is kept as 4d for the cylindrical and the fan-shape holes, and 8d for the DJFC holes. The uniformity of effectiveness distribution is described by a new parameter (Lateral-Uniformity, LU) defined in this paper. The effects of density ratios (DR = 1.0, 1.5 and 2.5) on the film-cooling effectiveness and its uniformity are focused. Differences among geometries and effects of blowing ratios (M = 0.5, 1.0, 1.5, and 2.0) are also considered. The results show that at higher density ratios, the lateral spread of the discrete-hole geometries (i.e., the cylindrical and the fan-shape holes) is enhanced, while the DJFC holes is more advantageous in film-cooling effectiveness. Mostly, a higher lateral-uniformity is obtained at DR = 2.5 due to better coolant coverage and enhanced lateral spread, but the effects of the density ratio on the lateral-uniformity are not monotonic in some cases. Utilizing the compound angle configuration leads to an increased lateral-uniformity due to a stronger spanwise motion of the jet. Generally, with a higher blowing ratio, the lateral-uniformity of the discrete-hole geometries decreases due to narrower traces, while that of the DJFC holes increases due to a stronger spanwise movement.


Author(s):  
Shiou-Jiuan Li ◽  
Shang-Feng Yang ◽  
Je-Chin Han

The density ratio effect on leading edge showerhead film cooling has been studied experimentally using the pressure sensitive paint (PSP) mass transfer analogy method. Leading edge model is a blunt body with a semi-cylinder and an after body. There are two designs: seven-row and three-row of film cooling holes for simulating vane and blade, respectively. The film holes are located at 0 (stagnation row), ±15, ±30, and ±45 deg for seven-row design, and at 0 and ±30 for three-row design. Four film holes configurations are used for both test designs: radial angle cylindrical holes, compound angle cylindrical holes, radial angle shaped holes, and compound angle shaped holes. Coolant to mainstream density ratio varies from DR = 1.0, 1.5, to 2.0 while blowing ratio varies from M = 0.5 to 2.1. Experiments were conducted in a low speed wind tunnel with Reynolds number 100,900 based on mainstream velocity and diameter of the cylinder. The mainstream turbulence intensity near leading edge model is about 7%. The results show the shaped holes have overall higher film cooling effectiveness than cylindrical holes, and radial angle holes are better than compound angle holes, particularly at higher blowing ratio. Larger density ratio makes more coolant attach to the surface and increases film protection for all cases. Radial angle shaped holes provides best film cooling at higher density ratio and blowing ratio for both designs.


Sign in / Sign up

Export Citation Format

Share Document