Volume 4: Heat Transfer, Parts A and B
Latest Publications


TOTAL DOCUMENTS

166
(FIVE YEARS 0)

H-INDEX

8
(FIVE YEARS 0)

Published By ASMEDC

9780791843994

Author(s):  
Daniel R. Carroll ◽  
Paul I. King ◽  
James L. Rutledge

A water channel study was conducted on a cylindrical leading edge model of a film-cooled turbine blade to assess the effects of surface modifications on film spreading. A single radial coolant hole located 21.5° from the stagnation line, angled 20° to the surface and 90° to the flow direction supplied dyed coolant flow. Surface modifications included a variety of dimples upstream and downstream of the coolant hole and transverse trenches milled coincident with the coolant hole. Compared to the unmodified surface, a single row of small cylindrical or spherical dimples upstream of the coolant hole steadies the jet at blowing ratios up to M = 0.75. Medium and large spherical dimples downstream of the coolant hole have a similar effect, but none of the dimple geometries studied affect the coolant jet above M = 0.75. A single-depth, square-edged transverse trench spreads the coolant spanwise, increasing the coverage of a single coolant hole more than two times. This trench suffers from coolant blow-out above M = 0.50, but a deeper, tapered-depth trench entrains and spreads the coolant very effectively at blowing ratios above M = 0.50. The tapered trench prevents jet liftoff and is the only geometry studied that holds the coolant closer to the surface than the unmodified coolant hole.


Author(s):  
Rebecca Hollis ◽  
Jeffrey P. Bons

Two methods of flow control were designed to mitigate the effects of the horseshoe vortex structure (HV) at an airfoil/endwall junction. An experimental study was conducted to quantify the effects of localized boundary layer removal on surface heat transfer in a low-speed wind tunnel. A transient infrared technique was used to measure the convective heat transfer values along the surface surrounding the juncture. Particle image velocimetry was used to collect the time-mean velocity vectors of the flow field across three planes of interest. Boundary layer suction was applied through a thin slot cut into the leading edge of the airfoil at two locations. The first, referred to as Method 1, was directly along the endwall, the second, Method 2, was located at a height ∼1/3 of the approaching boundary layer height. Five suction rates were tested; 0%, 6.5%, 11%, 15% and 20% of the approaching boundary layer mass flow was removed at a constant rate. Both methods reduced the effects of the HV with increasing suction on the symmetry, 0.5-D and 1-D planes. Method 2 yielded a greater reduction in surface heat transfer but Method 1 outperformed Method 2 aerodynamically by completely removing the HV structure when 11% suction was applied. This method however produced other adverse effects such as high surface shear stress and localized areas of high heat transfer near the slot edges at high suction rates.


Author(s):  
Carlos Arroyo Osso ◽  
T. Gunnar Johansson ◽  
Fredrik Wallin

In most designs of two-spool turbofan engines, intermediate turbine duct (ITD’s) are used to connect the high-pressure turbine (HPT) with the low-pressure turbine (LPT). Demands for more efficient engines with reduced emissions require more “aggressive ducts”, ducts which provide both a higher radial offset and a larger area ratio in the shortest possible length, while maintaining low pressure losses and avoiding non-uniformities in the outlet flow that might affect the performance of the downstream LPT. The work presented in this paper is part of a more comprehensive experimental and computational study of the flowfield and the heat transfer in an aggressive ITD. The main objectives of the study were to obtain an understanding of the mechanisms governing the heat transfer in ITD’s and to obtain high quality experimental data for the improvement of the CFD-based design tools. This paper consists of two parts. The first one, this one, presents and discusses the results of the experimental study. In the second part, a comparison between the experimental results and a numerical analysis is presented. The duct studied was a state-of-the-art “aggressive” design with nine thick non-turning structural struts. It was tested in a large-scale low-speed experimental facility with a single-stage HPT. In this paper measurements of the steady convective heat transfer coefficient (HTC) distribution on both endwalls and on the strut for the duct design inlet conditions are presented. The heat transfer measurement technique used is based on infrared-thermography. Part of the results of the flow measurements is also included.


Author(s):  
Aneesh Sridhar Vadvadgi ◽  
Savas Yavuzkurt

The present study deals with the numerical modeling of the turbulent flow in a rotor-stator cavity with or without imposed through flow with heat transfer. The commercial finite volume based solver, ANSYS/FLUENT is used to numerically simulate the problem. A conjugate heat transfer approach is used. The study specifically deals with the calculation of the heat transfer coefficients and the temperatures at the disk surfaces. Results are compared with data where available. Conventional approaches which use boundary conditions such as constant wall temperature or constant heat flux in order to calculate the heat transfer coefficients which later are used to calculate disk temperatures can introduce significant errors in the results. The conjugate heat transfer approach can resolve this to a good extent. It includes the effect of variable surface temperature on heat transfer coefficients. Further it is easier to specify more realistic boundary conditions in a conjugate approach since solid and the flow heat transfer problems are solved simultaneously. However this approach incurs a higher computational cost. In this study, the configuration chosen is a simple rotor and stator system with a stationary and heated stator and a rotor. The aspect ratio is kept small (around 0.1). The flow and heat transfer characteristics are obtained for a rotational Reynolds number of around 106. The simulation is performed using the Reynolds Stress Model (RSM). The computational model is first validated against experimental data available in the literature. Studies have been carried out to calculate the disk temperatures using conventional non-conjugate and full conjugate approaches. It has been found that the difference between the disk temperatures for conjugate and non-conjugate computations is 5 K for the low temperature and 30 K for the high temperature boundary conditions. These represent differences of 1% and 2% from the respective stator surface temperatures. Even at low temperatures, the Nusselt numbers at the disk surface show a difference of 5% between the conjugate and non-conjugate computations, and far higher at higher temperatures.


Author(s):  
Imran Qureshi ◽  
Andy D. Smith ◽  
Kam S. Chana ◽  
Thomas Povey

Detailed experimental measurements have been performed to understand the effects of turbine inlet temperature distortion (hot-streaks) on the heat transfer and aerodynamic characteristics of a full-scale unshrouded high pressure turbine stage at flow conditions that are representative of those found in a modern gas turbine engine. To investigate hot-streak migration, the experimental measurements are complemented by three-dimensional steady and unsteady CFD simulations of the turbine stage. This paper presents the time-averaged measurements and computational predictions of rotor blade surface and rotor casing heat transfer. Experimental measurements obtained with and without inlet temperature distortion are compared. Time-mean experimental measurements of rotor casing static pressure are also presented. CFD simulations have been conducted using the Rolls-Royce code Hydra, and are compared to the experimental results. The test turbine was the unshrouded MT1 turbine, installed in the Turbine Test Facility (previously called Isentropic Light Piston Facility) at QinetiQ, Farnborough UK. This is a short duration transonic facility, which simulates engine representative M, Re, Tu, N/T and Tg /Tw at the turbine inlet. The facility has recently been upgraded to incorporate an advanced second-generation temperature distortion generator, capable of simulating well-defined, aggressive temperature distortion both in the radial and circumferential directions, at the turbine inlet.


Author(s):  
Peter Gloeckner ◽  
Klaus Dullenkopf ◽  
Michael Flouros

Operating conditions in high speed mainshaft ball bearings applied in new aircraft propulsion systems require enhanced bearing designs and materials. Rotational speeds, loads, demands on higher thrust capability, and reliability have increased continuously over the last years. A consequence of these increasing operating conditions are increased bearing temperatures. A state of the art jet engine high speed ball bearing has been modified with an oil channel in the outer diameter of the bearing. This oil channel provides direct cooling of the outer ring. Rig testing under typical flight conditions has been performed to investigate the cooling efficiency of the outer ring oil channel. In this paper the experimental results including bearing temperature distribution, power dissipation, bearing oil pumping and the impact on oil mass and parasitic power loss reduction are presented.


Author(s):  
Benoit Laveau ◽  
Reza S. Abhari

Shaped holes are used on modern turbine blades for their higher performance and greater lateral coolant spreading compared to classic streamwise angled holes. This study incorporates measurements and observations from a shaped hole geometry undertaken at ETH Zurich in which a row of laterally expanded diffusely shaped holes is compared to the classic row of streamwise round holes. Infrared measurements provide high-resolution data of the adiabatic effectiveness and three dimensional velocity measurements are carried out through stereoscopic Particle Image Velocimetry. Both experiments are run for similar operating conditions allowing a comparison to be made between the flow structure and the thermal performance. The adiabatic effectiveness is seen to be higher for shaped holes compared to cylindrical holes: in particular the laterally averaged values are higher due to a larger lateral spreading of the coolant. The work presented here shows the first results on the limited influence of the density ratio on the thermal performance. The performance is also influenced by the vortical structure. The typical counter-rotating vortex pair which is completed by another pair of anti-kidney vortices is observed with their strength being clearly reduced compared to the example with cylindrical holes. The doubled structure and the reduced strength change the behavior of the jet, explaining the higher performance of a jet with shaped holes. The vertical motion leading to lift-off is reduced, so the jet remains close to the surface even at high blowing rates. The goal of this article is to present data for the thermal performance and flow field of shaped holes and then explain the relationship between the two.


Author(s):  
Thomas E. Dyson ◽  
Dave G. Bogard ◽  
Justin D. Piggush ◽  
Atul Kohli

Overall effectiveness, φ, for a simulated turbine blade leading edge was experimentally measured using a model constructed with a relatively high conductivity material selected so that the Biot number of the model matched engine conditions. The model incorporated three rows of cylindrical holes with the center row positioned on the stagnation line. Internally the model used an impingement cooling configuration. Overall effectiveness was measured for pitch variation from 7.6d to 9.6d for blowing ratios ranging from 0.5 to 3.0, and angle of attack from −7.7° to +7.7°. Performance was evaluated for operation with a constant overall mass flow rate of coolant. Consequently when increasing the pitch, the blowing ratio was increased proportionally. The increased blowing ratio resulted in increased impingement cooling internally and increased convective cooling through the holes. The increased internal and convective cooling compensated, to a degree, for the decreased coolant coverage with increased pitch. Performance was evaluated in terms of laterally averaged φ, but also in terms of the minimum φ. The minimum φ evaluation revealed localized hot spots which are arguably more critical to turbine blade durability than the laterally averaged results. For small increases in pitch there was negligible decrease in performance.


Author(s):  
Mohammad A. Elyyan ◽  
Danesh K. Tafti

Large-eddy simulations are used to investigate Coriolis forces effect on flow structure and heat transfer in a rotating dimpled channel. Two geometries with two dimple depths are considered, δ = 0.2 and 0.3 of channel height, for a wide range of rotation number, Rob = 0.0–0.70, based on mean bulk velocity and channel height. It is found that the turbulent flow is destabilized near the trailing side and stabilized near the leading side, with secondary flow structures generated in the channel under the effect of Coriolis forces. Higher heat transfer levels are obtained at the trailing surface of the channel, especially in regions of flow reattachment and boundary layer regeneration at the dimple surface. Coriolis forces showed a stronger effect on the flow structure for the shallow dimple geometry (δ = 0.2) compared to the deeper dimple where the growth and shrinkage of the flow recirculation zone in the dimple cavity with rotation were more pronounced than the deep dimple geometry (δ = 0.3). Under the action of rotation, heat transfer augmentation increased by 57% for δ = 0.2 and by 70% for δ = 0.3 on the trailing side and dropped by 50% for δ = 0.2 and by 45% for δ = 0.3 on the leading side from that of the stationary case.


Author(s):  
Zhenfeng Wang ◽  
Peigang Yan ◽  
Hongyan Huang ◽  
Wanjin Han

The ANSYS-CFX software is used to simulate NASA-Mark II high pressure air-cooled gas turbine. The work condition is Run 5411 which have transition flow characteristics. The different turbulence models are adopted to solve conjugate heat transfer problem of this three-dimensional turbine blade. Comparing to the experimental results, k-ω-SST-γ-θ turbulence model results are more accurate and can simulate accurately the flow and heat transfer characteristics of turbine with transition flow characteristics. But k-ω-SST-γ-θ turbulence model overestimates the turbulence kinetic energy of blade local region and makes the heat transfer coefficient higher. It causes that local region temperature of suction side is higher. In this paper, the compiled code adopts the B-L algebra model and simulates the same computation model. The results show that the results of B-L model are accurate besides it has 4% temperature error in the suction side transition region. In addition, different turbulence characteristic boundary conditions of turbine inner-cooling passages are given and K-ω-SST-γ-θ turbulence model is adopted in order to obtain the effect of turbulence characteristic boundary conditions for the conjugate heat transfer computation results. The results show that the turbulence characteristic boundary conditions of turbine inner-cooling passages have a great effect on the conjugate heat transfer results of high pressure gas turbine. ANSYS is applied to analysis the thermal stress of Mark II blade which has ten radial cooled passages and the results of Von Mises stress show that the temperature gradient results have a great effect on the results of blade thermal stress.


Sign in / Sign up

Export Citation Format

Share Document