outlet hole
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 9)

H-INDEX

4
(FIVE YEARS 1)

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2014
Author(s):  
Alexey A. Vasilyev ◽  
Alexey N. Vasilyev ◽  
Dmitry Budnikov ◽  
Vadim Bolshev ◽  
Michal Jasinski ◽  
...  

This article describes the influence of dynamic bridging in the unloading of a hopper at a processing plant on the grain flow homogeneity in a convective-microwave zone. In accordance with calculation methods for unloading hoppers, the parameters of the hopper unit and those of the outlet hole insuring that grain flows without static bridging formation is defined. It was found that moisture content fluctuations do not affect the process of grain transport. The equation for dynamic bridging rise depending on its position on the vertical axis of the unloading hopper has been deduced that enables the definition of the inhomogeneity of grain flow from its outlet hole. Calculations show that a certain inhomogeneity occurred between the right and the left parts of the unloading hopper in relation to its vertical axis in the course of grain discharging. This effect underlies the inhomogeneity of grain processing and reduction of its effectiveness in convective-microwave zones. An experimental model of unloading the hopper has been manufactured in order to perform investigational studies. The results of studies have completely confirmed the hypotheses. It has been found that dynamic bridge formation in unloading of the hopper results in the inhomogeneity of grain flow in convective-microwave zone.


2021 ◽  
Vol 6 (3) ◽  
pp. 491-506
Author(s):  
Alejandro Ruiz Sánchez ◽  
Jorge Andrés Sierra Del Rio ◽  
Toni Pujol

The gravitational water vortex turbine is an alternative to renewable energies, it transforms the hydrokinetic energy of the rivers into electric energy and it does not require a reservoir. According to studies carried out, the hydraulic efficiency can increase or decrease according to the turbine geometrical configuration. This paper presents a numerical (CFD) and analytical comparison between conical and cylindrical designs for the outlet. The results show a higher performance for conical geometry than the cylindrical tank. The fluid behavior in CFD and analytical studies presents a tangential velocity increase near to air core and outlet hole (similar behavior). The maximum theoretical power generated was 167 W and 150 W for conical and cylindrical design respectively. The differences between geometries of the outlet holes using CFD and analytical models were 11 and 7%, respectively. However, the closest results to the CFD model had different values of 31 and 29% for conical and cylindrical design, respectively. The furthest result regarding the CFD study was 55%. The principal difference is due to tank geometry, the change in discharge zone, as well as the ratio of diameter tank and outlet hole can increase or decrease the tangential velocity and make a stronger and more stable vortex formation. The theoretical power generated is a good parameter to select the height to place the rotor.


Actuators ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 139
Author(s):  
Xiaoxiao Niu ◽  
Guangfa Hao ◽  
Chengliang Zhang ◽  
Lei Li

Hydraulic rubber hoses are subject to great hydraulic impact during the actual working process, which causes a great potential safety hazard. Therefore, it is necessary to carry out pressure tests on hose assemblies to ensure its quality, so providing a high pressure for the hydraulic hose has become the key technology of this problem. Aiming at solving the problem of detection of pressure resistance in hydraulic rubber hose cleaning machines, this paper analyzed the pressurization mechanism of the hydraulic pressurized cylinder and proposed a method of continuous pressurization. This paper also theoretically analyzed the pressure expansion of the rubber hose, and the conclusion is that for the maximum hose capacity (hose size is Φ25 mm × 6 m), the volume of water required to provide water in the hose from 10 MPa to 100 MPa is 0.59 L. The pressurized cylinder was designed and checked theoretically and analyzed by the finite element method. It is concluded that the maximum stress of the pressurized cylinder is concentrated at the bottom of the high-pressure chamber, and the outlet hole at the bottom of the cylinder barrel of the high-pressure chamber is the weakest part of the pressurized cylinder. The performance of the supercharging cylinder is verified by experiments, which proves the feasibility, rapidity and stability of the supercharging cylinder.


2020 ◽  
pp. 83-92
Author(s):  
Andrey Selegei ◽  
Valery Ivaschenko ◽  
Vyacheslav Golovko ◽  
Nikolay Mikhailovsky ◽  
Svetlana Selegey ◽  
...  

Blast furnace practice has been remaining the most suitable one in the steel production route. A rather large amount of blast furnaces (BF) is equipped with bell-like charging equipment. The discharge capability of such equipment has a drastic influence on the parameters of the charging operations and blast furnace driving rates. The charging features regulate in many cases burden materials descend and the parameters of the BF smelt. In relation to the mentioned, it is revealed that to determine the volume of the burden materials flow passing through the isolation bell of the BF charging area is an urgent scientific and engineering problem. A number of publications is devoted to the problem how to define the burden materials flow coming from the large bell. Most of these studies are grounded on the expressions by prof. Zenkov. However, there is a drawback apparently present in these findings and it can be expressed as the lack of the complex approach to incorporate such parameters as the material type, its granulometry and the geometry of the isolation bell outlet hole. The aim of the current research is to reveal the analytic dependence capable of determining the volumetric flow of the burden materials passing through the hole of the large bell. Thus, possessing the data on the burden materials flow and the geometry of the isolation bell outlet hole, one can determine the initial conditions for developing the trajectory of burden materials movement within the top area of the blast furnace. Moreover, the method proposed with the current publication permits determining the actual aggregate size of the burden materials coming to the BF top charge through the data of burden materials volumetric flow. Further, the actual size of the material particles being charged can be derived from the dependences presented in this work and this, in its turn, influences the permeability of the burden materials column for gases at a given point of BF top radius. Taking these data into account, the real opportunity emerges for an on-line correction of the BF drive by incorporating the certain on-line conditions of BF smelt. The results of the findings reported in this article are to be utilized for improvements on the automation system of blast furnace charge control.


Drying is the process of removing moisture contents from solid. Solar drying refers to a technique that utilizes incident solar radiation to convert it into thermal energy required for drying purposes. This project presents the design, construction and performance of an indirect type solar dryer for coffee product. In the dryer the air inters into the solar collector from the atmosphere through air inlet hole. This air will be heated in the collector and then pass to the drying chamber through the hole. Then the air exhausts through the outlet hole at the top of the drying chamber. The system designed can handle a capacity of up to 50kg of wet coffee per m2 at a depth of 100 mm. The average sunshine at Bale Robe was found to be 12 hours per day. The daily solar insolation at the site was found to be 5.86kW/m2 of surface per day. By utilizing the solar collector in question and assuming a collector efficiency of 20 %, the total solar energy received is 5.86 kW-hrs/m2 /day or 46.88 kW-hours per day (assuming the sunshine hours per day to be 8 hours). This solar dryer has a collector efficiency of 39.1%, a pick-up efficiency of 49.3%, and a system efficiency of 32.2%. the collector area of the system is calculated to be 1.11m2 and the total length of 1000mm by 300mm. The drying chamber is essentially a cabinetry dryer and measures 1020mm × 800mm × 30mm. It accommodates a drying bin which acts as the holding compartment for the wet coffee to be dried. The base of the drying chamber is made of a block of wood material 50mm deep, since wood is a good thermal insulator. The wood must be well seasoned and pre-treated to ensure it is protected from the humid environment. The air outlet is fitted at the top of the drying chamber which serves as the exit for the moisture ridden air. It is important since it ensures that moisture does not condense at the top of the drying chamber and speeds up the rate of drying through creating the suction effect. The drying bin measures 800mm × 800mm × 20mm.


2019 ◽  
Vol 22 (4) ◽  
pp. 29-36
Author(s):  
Yo-Hwan Kim ◽  
Han-Sol Yoo ◽  
Sang-Won Kim ◽  
Youn-Jea Kim
Keyword(s):  

Author(s):  
E. A. Pitsuha ◽  
E. K. Buchilko ◽  
Yu. S. Teplitskii ◽  
D. S. Slizhuk

An experimental investigation of the heat-transfer coefficient to a spherical probe in a cyclone-bed chamber with fluidized bed in the “cold” and “hot” regimes has been carried out. The heat-transfer coefficient was determined by the regular thermal regime. The dependences of the heat-transfer coefficient in the vortex-bed furnace on the various parameters: the diameter of the outlet hole, the air flow rate, the share of the bottom blast and the location of the probe were determined. It is revealed that in the “cold” regime the heat-transfer coefficient has practically constant value in the radial direction, it almost does not depend on the diameter of the outlet hole and the share of the bottom blast and depends significantly on the position of the probe along the height of the furnace and the air flow rate. The effect of flow swirling on the heat-transfer coefficient in a cyclone-bed chamber with fluidized bed is determined. When the fuel burns (“hot” regime), the heat-transfer coefficient is not constant in the radial direction and accept the maximum values in the central area of the chamber. At the same time, the part of conductive-convective component in the total heat-transfer coefficient to the spherical probe, depending on its radial position, is estimated at 40–70 %. The results can be used in the design and creation of modern high-efficiency furnaces for burning local solid biofuels.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Ling Wang ◽  
Guo-Xiu Li ◽  
Chun-Long Xu ◽  
Xing Xi ◽  
Xiao-Jun Wu ◽  
...  

According the actual structure and working principle of a fuel injector to build a model of the common-rail injector, including the control valve, the solenoid valve, and the needle valve of the injector. The model includes the leakage model for the control piston and needle valve that takes into account increasing leakage at high pressure. The performance of the fuel injector is investigated using a one-dimensional numerical model. Analyzing the effect of the system and structure parameters including common-rail pressure, injection pulse width, inlet and outlet hole diameter, and the injection nozzle on the injection characteristics of the fuel injector. Results show that the geometric parameter is the main property affecting the flow characteristic of the injector, which includes the flow rate of inlet and outlet hole, pressure waves in the control chamber and injection rate. The common-rail pressure, injection pulse width and the geometric parameters mainly affect the injection performance, such as the injection rate and injected volume. The investigation result can provide some useful information to improve the injection characteristic in follow-up studies.


Sign in / Sign up

Export Citation Format

Share Document