A Numerical Method for Position Analysis of Compliant Mechanisms With More Degrees of Freedom Than Inputs

2011 ◽  
Vol 133 (6) ◽  
Author(s):  
Quentin T. Aten ◽  
Shannon A. Zirbel ◽  
Brian D. Jensen ◽  
Larry L. Howell

An underactuated or underconstrained compliant mechanism may have a determined equilibrium position because its energy storage elements cause a position of local minimum potential energy. The minimization of potential energy (MinPE) method is a numerical approach to finding the equilibrium position of compliant mechanisms with more degrees of freedom (DOF) than inputs. Given the pseudorigid-body model of a compliant mechanism, the MinPE method finds the equilibrium position by solving a constrained optimization problem: minimize the potential energy stored in the mechanism, subject to the mechanism’s vector loop equation(s) being equal to zero. The MinPE method agrees with the method of virtual work for position and force determination for underactuated 1-DOF and 2-DOF pseudorigid-body models. Experimental force-deflection data are presented for a fully compliant constant-force mechanism. Because the mechanism’s behavior is not adequately modeled using a 1-DOF pseudorigid-body model, a 13-DOF pseudorigid-body model is developed and solved using the MinPE method. The MinPE solution is shown to agree well with nonlinear finite element analysis and experimental force-displacement data.

Author(s):  
Quentin T. Aten ◽  
Shannon A. Zirbel ◽  
Brian D. Jensen ◽  
Larry L. Howell

An under-actuated or underconstrained compliant mechanism may have a determined equilibrium position because its energy storage elements cause a position of local minimum potential energy. The minimization of potential energy (MinPE) method is a numerical approach to finding the equilibrium position of compliant mechanisms with more degrees of freedom (DOF) than inputs. Given the pseudo-rigid-body model of a compliant mechanism, the MinPE method finds the equilibrium position by solving a constrained optimization problem: minimize the potential energy stored in the mechanism, subject to the mechanism’s vector loop equation(s) being equal to zero. The MinPE method agrees with the method of virtual work for position and force determination for under-actuated 1-DOF and 2-DOF pseudo-rigid-body models. Experimental force-deflection data is presented for a fully compliant constant-force mechanism. Because the mechanism’s behavior is not adequately modeled using a 1-DOF pseudo-rigid-body model, a 13-DOF pseudo-rigid-body model is developed and solved using the MinPE method. The MinPE solution is shown to agree well with non-linear finite element analysis and experimental force-displacement data.


Author(s):  
Pratheek Bagivalu Prasanna ◽  
Ashok Midha ◽  
Sushrut G. Bapat

Abstract Understanding the kinematic properties of a compliant mechanism has always proved to be a challenge. A concept of compliance number offered earlier emphasized the development of terminology that aided in its determination. A method to evaluate the elastic degrees of freedom associated with the flexible segments/links of a compliant mechanism using the pseudo-rigid-body model (PRBM) concept is provided. In this process, two distinct classes of compliant mechanisms are developed involving: (i) Active Compliance and (ii) Passive Compliance. Furthermore, these also aid in a better characterization of the kinematic behavior of a compliant mechanism. A more lucid interpretation of the significance of compliance number is provided. Applications of this method to both active and passive compliant mechanisms are exemplified. Finally, an experimental procedure that aids in visualizing the degrees of freedom as calculated is presented.


Author(s):  
Sushrut G. Bapat ◽  
Pratheek Bagivalu Prasanna ◽  
Ashok Midha

Abstract Traditionally, the deflected configuration of compliant segments is determined through rigorous mathematical analysis using Newtonian mechanics. Application of these principles in evaluating the deformed configuration of compliant mechanisms, containing a variety of segment types, becomes cumbersome. This paper introduces a methodology to determine the expected deflected configuration(s) of a compliant mechanism, for a given set of load and/or displacement boundary conditions. The method utilizes the principle of minimum total potential energy, in conjunction with the degrees-of-freedom analysis and the pseudo-rigid-body model concept. The static mode shape(s) of compliant segments are integrated in identifying the possible functional configuration(s) of a given compliant mechanism’s structural configuration. The methodology, in turn, also facilitates the in situ determination of the deformed configuration of the constituent compliant segments. It thus assists in the identification of an appropriate pseudo-rigid-body model for design and analysis of a compliant mechanism.


Author(s):  
Larry L. Howell ◽  
Ashok Midha

Abstract The advantages of compliant or flexible link mechanisms include increased design flexibility and reduction in manufacturing time and cost. The analysis of such mechanisms may be difficult and time consuming due to the nonlinearities introduced by large deflections. Also, unlike rigid-body mechanisms, the type and form of motion of a compliant mechanism is dependent on the location and magnitude of applied loads. The pseudo-rigid-body model concept has been developed to simplify the analysis of compliant mechanisms by allowing them to be modeled as rigid-link mechanisms with springs. This work uses the principle of virtual work and the pseudo-rigid-body model concept to develop force-deflection relationships for compliant mechanisms. Several examples are presented, and general design equations are derived for pseudo-rigid-body four-bar and slider-crank mechanisms.


2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Pratheek Bagivalu Prasanna ◽  
Sushrut G. Bapat ◽  
Ashok Midha ◽  
Vamsi Lodagala

Abstract Traditionally, the deflected configuration of compliant segments is determined through rigorous mathematical analysis using Newtonian mechanics. Application of this approach in evaluating the deformed configuration of compliant mechanisms, containing a variety of segment types, becomes cumbersome. This paper introduces a methodology to determine the possible deflected configuration(s) of a compliant mechanism, for a given set of load and/or displacement boundary conditions. The methodology utilizes the principle of minimum potential energy, in conjunction with the degrees-of-freedom analysis and the pseudo-rigid-body model concept. The static mode shape(s) of compliant segments are integrated in identifying the possible deflected configuration(s) of a given compliant mechanism. The methodology facilitates the in situ determination of the possible deformed configuration(s) of the compliant mechanism and its constituent segments. This, in turn, assists in the important task of identifying an appropriate pseudo-rigid-body model for the design and analysis of a compliant mechanism. The proposed methodology is illustrated with examples, and supported with experimental validation.


Author(s):  
Giovanni Berselli ◽  
Rocco Vertechy ◽  
Gabriele Vassura ◽  
Vincenzo Parenti Castelli

The interest in actuators based on dielectric elastomer films as a promising technology in robotic and mechatronic applications is increasing. The overall actuator performances are influenced by the design of both the active film and the film supporting frame. This paper presents a single-acting actuator which is capable of supplying a constant force over a given range of motion. The actuator is obtained by coupling a rectangular film of silicone dielectric elastomer with a monolithic frame designed to suitably modify the force generated by the dielectric elastomer film. The frame is a fully compliant mechanism whose main structural parameters are calculated using a pseudo-rigid-body model and then verified by finite element analysis. Simulations show promising performance of the proposed actuator.


Author(s):  
Adarsh Mavanthoor ◽  
Ashok Midha

Significant reduction in cost and time of bistable mechanism design can be achieved by understanding their bistable behavior. This paper presents bistable compliant mechanisms whose pseudo-rigid-body models (PRBM) are four-bar mechanisms with a torsional spring. Stable and unstable equilibrium positions are calculated for such four-bar mechanisms, defining their bistable behavior for all possible permutations of torsional spring locations. Finite Element Analysis (FEA) and simulation is used to illustrate the bistable behavior of a compliant mechanism with a straight compliant member, using stored energy plots. These results, along with the four-bar and the compliant mechanism information, can then be used to design a bistable compliant mechanism to meet specified requirements.


1998 ◽  
Vol 120 (3) ◽  
pp. 392-400 ◽  
Author(s):  
A. Saxena ◽  
S. N. Kramer

Compliant members in flexible link mechanisms undergo large deflections when subjected to external loads. Because of this fact, traditional methods of deflection analysis do not apply. Since the nonlinearities introduced by these large deflections make the system comprising such members difficult to solve, parametric deflection approximations are deemed helpful in the analysis and synthesis of compliant mechanisms. This is accomplished by representing the compliant mechanism as a pseudo-rigid-body model. A wealth of analysis and synthesis techniques available for rigid-body mechanisms thus become amenable to the design of compliant mechanisms. In this paper, a pseudo-rigid-body model is developed and solved for the tip deflection of flexible beams for combined end loads. A numerical integration technique using quadrature formulae has been employed to solve the large deflection Bernoulli-Euler beam equation for the tip deflection. Implementation of this scheme is simpler than the elliptic integral formulation and provides very accurate results. An example for the synthesis of a compliant mechanism using the proposed model is also presented.


Author(s):  
A. Saxena ◽  
Steven N. Kramer

Abstract Compliant members in flexible link mechanisms undergo large deflections when subjected to external loads for which, traditional methods of deflection analysis do not apply Nonlinearities introduced by these large deflections make the system comprising such members difficult to solve Parametric deflection approximations are then deemed helpful in the analysis and synthesis of compliant mechanisms This is accomplished by seeking the pseudo-rigid-body model representation of the compliant mechanism A wealth of analysis and synthesis techniques available for rigid-body mechanisms thus become amenable to the design of compliant mechanisms In this paper, a pseudo-rigid-body model is developed and solved for the tip deflection of flexible beams for combined end loads with positive end moments A numerical integration technique using quadrature formulae has been employed to solve the nonlinear Bernoulli-Euler beam equation for the tip deflection Implementation of this scheme is relatively simpler than the elliptic integral formulation and provides nearly accurate results Results of the numerical integration scheme are compared with the beam finite element analysis An example for the synthesis of a compliant mechanism using the proposed model is also presented.


Author(s):  
Larry L. Howell ◽  
Ashok Midha

Abstract Compliant mechanisms gain some or all of their mobility from the flexibility of their members rather than from rigid-body joints only. More efficient and usable analysis and design techniques are needed before the advantages of compliant mechanisms can be fully utilized. In an earlier work, a pseudo-rigid-body model concept, corresponding to an end-loaded geometrically nonlinear, large-deflection beam, was developed to help fulfill this need. In this paper, the pseudo-rigid-body equivalent spring stiffness is investigated and new modeling equations are proposed. The result is a simplified method of modeling the force/deflection relationships of large-deflection members in compliant mechanisms. Flexible segments which maintain a constant end angle are discussed, and an example mechanism is analyzed. The resulting models are valuable in the visualization of the motion of large-deflection systems, as well as the quick and efficient evaluation and optimization of compliant mechanism designs.


Sign in / Sign up

Export Citation Format

Share Document