spring stiffness
Recently Published Documents


TOTAL DOCUMENTS

312
(FIVE YEARS 84)

H-INDEX

18
(FIVE YEARS 4)

Author(s):  
Lingkang Meng ◽  
Yuchuan Zhu ◽  
Jie Ling ◽  
Jianjun Ding ◽  
Zhichuang Chen ◽  
...  

In the current research of the magnetic circuit model of the servo valve torque motor, the magnetic flux leaking from working air-gaps is regarded as constant. However, the working air-gaps leakage flux varies with the armature rotation angle, which affects the accuracy of the existing mathematical model of the torque motor. To solve this problem, a new mathematical model of the torque motor with two working air-gaps is built. First, different from the previous model, the variation of the working air-gaps leakage flux is considered in the magnetic circuit model. A more detailed mathematical model of the torque motor is established based on the magnetic circuit model. Second, the finite element method is used to reveal that there is a linear relationship between working air-gaps leakage flux and armature rotation angle in a certain range of rotation angles. Then, the new model is validated by numerical calculation, which indicates that the theoretical results calculated by this new model show better agreement with the simulation results compared to the previous model when the armature rotation angle increases. Further, the theoretical results of the electromagnetic torque constant and magnetic spring stiffness acquired by the new model and the previous model are compared. The comparison shows that the variation of the working air-gaps leakage flux has the greatest influence on the magnetic spring stiffness. Finally, the experiments on the torque motor are conducted to verify the accuracy of the new model. The theoretical results obtained by this new model are better consistent with the experimental results than that obtained by the previous model. This study shows that considering the variation of working air-gaps leakage flux is valuable to improve the accuracy of the magnetic circuit model of the torque motor, which provides an effective guidance for the structural optimization and performance prediction of the torque motor.


2021 ◽  
Vol 11 (24) ◽  
pp. 12158
Author(s):  
Zhilong Zhang ◽  
Aijun Geng

Reducing ear damage is the key to improving the quality of maize harvests. In order to reduce the impact and damage of the ear caused by the ear snapping mechanism, this paper proposes a method to convert ear deformation energy during collision into elastic potential energy in the ear snapping mechanism. According to the above method, a low-damage maize snapping mechanism was designed. In order to verify the feasibility of energy conversion in reducing damage, the dynamic model of the contact between the ear and the snapping plate was established, and a dynamic simulation analysis was carried out based on the finite element method (FEM). In order to obtain better parameters for the improved mechanism, a test rig was established, after which a performance test was carried out on the test rig. The results showed that the primary and secondary order that affected the ear damage rate was the rotational speed of the snapping roller, the spring stiffness and the forward speed. The data processing software Design Expert was used to optimize the parameters, it was concluded that when the rotational speed was 805 r·min−1, the forward speed was 1.29 m·s−1, the spring stiffness was 33.5 N·mm−1, the model predicted that the ear damage rate was 0.023%. Therefore, this paper could provide further reference for research into maize low-damage ear snapping technology.


2021 ◽  
Vol 2094 (4) ◽  
pp. 042027
Author(s):  
Y N Syromyatnikov ◽  
A A Orekhovskaya ◽  
A-M S Dzjasheev ◽  
E A Tikhonov ◽  
M N Kalimullin ◽  
...  

Abstract The subject research is operation of a combined machine for soil preparation and seeding of sunflower and corn seeds. Technological process of machine operation with installed guides, passive rotating flat discs with flanges (which properly ensure movement of soil along the plough share to loosening-separating device), a sowing device, a seed tube, a furrow former, a rotor, a separating grid, a parallelogram mechanism, a spring, a share is described. Dynamic prerequisites for increasing uniformity of depth of groove formation and seed placement in depth in soil are considered. Values of length of links of parallelogram mechanism, initial angle of their installation and stiffness of spring, values of deviations of combined machine section from given depth of movement of plough share are determined. It is proved that with an increase in length of levers of parallelogram mechanism, maximum deviations of section increase. An increase in initial angle of inclination of levers of parallelogram mechanism causes an increase in maximum deflections. As spring stiffness increases, maximum deflections decrease. Relevance of study lies in ensuring stability of copying soil surface by working bodies of combined machine while depth of seeding remains unchanged along entire length of movement, which will make it possible to increase movement speed and unit width. Target group of consumers of information in the article - designers, specialists involved in development of tillage machines.


2021 ◽  
Vol 8 (11) ◽  
Author(s):  
Longfei Cheng ◽  
Caihua Xiong ◽  
Wenbin Chen ◽  
Jiejunyi Liang ◽  
Bo Huang ◽  
...  

Assistive devices are used to reduce human effort during locomotion with increasing success. More assistance strategies are worth exploring, so we aimed to design a lightweight biarticular device with well-chosen parameters to reduce muscle effort. Based on the experience of previous success, we designed an exotendon to assist in swing leg deceleration. Then we conducted experiments to test the performance of the exotendon with different spring stiffness during walking. With the assistance of the exotendon, peak activation of semitendinosus decreased, with the largest reduction of 12.3% achieved with the highest spring stiffness ( p = 0.004). The peak activations of other measured muscles were not significantly different ( p = 0.15–0.92). The biological hip extension and knee flexion moments likewise significantly decreased with the spring stiffness ( p < 0.01). The joint angle was altered during the assisted phases with decreased hip flexion and knee extension. Meanwhile, the step frequency and the step length were also altered, while the step width remained unaffected. Gait variability changed only in the frontal plane, exhibiting lower step width variability. We conclude that passive devices assisting hip extension and knee flexion can significantly reduce the burden on the hamstring muscles, while the kinematics is easily altered.


2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Artur Struzik ◽  
Kiros Karamanidis ◽  
Anna Lorimer ◽  
Justin W. L. Keogh ◽  
Jan Gajewski

Stiffness, the resistance to deformation due to force, has been used to model the way in which the lower body responds to landing during cyclic motions such as running and jumping. Vertical, leg, and joint stiffness provide a useful model for investigating the store and release of potential elastic energy via the musculotendinous unit in the stretch-shortening cycle and may provide insight into sport performance. This review is aimed at assessing the effect of vertical, leg, and joint stiffness on running performance as such an investigation may provide greater insight into performance during this common form of locomotion. PubMed and SPORTDiscus databases were searched resulting in 92 publications on vertical, leg, and joint stiffness and running performance. Vertical stiffness increases with running velocity and stride frequency. Higher vertical stiffness differentiated elite runners from lower-performing athletes and was also associated with a lower oxygen cost. In contrast, leg stiffness remains relatively constant with increasing velocity and is not strongly related to the aerobic demand and fatigue. Hip and knee joint stiffness are reported to increase with velocity, and a lower ankle and higher knee joint stiffness are linked to a lower oxygen cost of running; however, no relationship with performance has yet been investigated. Theoretically, there is a desired “leg-spring” stiffness value at which potential elastic energy return is maximised and this is specific to the individual. It appears that higher “leg-spring” stiffness is desirable for running performance; however, more research is needed to investigate the relationship of all three lower limb joint springs as the hip joint is often neglected. There is still no clear answer how training could affect mechanical stiffness during running. Studies including muscle activation and separate analyses of local tissues (tendons) are needed to investigate mechanical stiffness as a global variable associated with sports performance.


2021 ◽  
Author(s):  
Karen Gellman ◽  
Andy Ruina

What is the effect of posture on the stability of a standing horse? We address this with a 2D quasi-static model. The model horse has 3 rigid parts: a trunk, a massless fore-limb and a massless rear limb, and has hinges at the shoulder, hip, and hooves. The postural parameter lg is the distance between the hooves. For a given lg, statics finds an equilibrium configuration which, with no muscle stabilization, is unstable. To measure the neuro-muscular effort to maintain stability, we add springs at the shoulder and hip; the larger the springs needed to stabilize the model, the more the neuro-muscular effort needed for stabilization. We find that a canted-in posture (small lg), observed in some pathological domestic horses, requires about twice the spring stiffness (representing twice the neuromuscular effort) as is needed for postures with vertical or slightly splayed-out (large lg ) legs.


2021 ◽  
Vol 11 (18) ◽  
pp. 8422
Author(s):  
Yuhong Ling ◽  
Shan Wu ◽  
Jingxin Gu ◽  
Hongtao Lai

Due to the serious impact of metro vibration on people’s lives, it is important to design vibration isolators. In this study, the dynamic characteristics of a thick-walled ring spring are studied first. Through theoretical derivation, a new formula suitable for thick-walled ring springs is proposed. Finite element numerical analysis was performed to study the load–displacement curve and stress of the ring spring and verified the correctness of the formula. According to the studied mechanic characteristics, a novel ring spring isolator is proposed for vibration isolation of the metro superstructure. With the help of a ring spring, the proposed isolator has good energy absorption and self-reset function. The dynamic simulations were conducted in a multi-story building with the ring spring isolator as the isolator to study the vibration performance. It is common knowledge that the vertical natural frequency of the superstructure that is isolated by compression springs is given by the mass of the superstructure and the spring stiffness. In order to obtain vibration attenuation and control the vertical deformation, the spring stiffness needs to be 500–1000 kN/mm. Hence, it is clear that the vibration isolator does reduce the vertical eigenfrequency. By comparing the isolated structure with the non-isolated structure, it is proved that the new isolator can effectively improve a building’s serviceability.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 928
Author(s):  
Guofeng Zhao ◽  
Xinwen Wang ◽  
Dongdong Lin ◽  
Ningning Xu ◽  
Chi Yu ◽  
...  

Double-deck vibrating flip-flow screens have been widely used for the repurposing of decoration waste; however, the influence of shear spring stiffness on the screen’s vibration characteristics is under-researched. The shear spring stiffness affects the amplitude–frequency characteristics, phase–frequency characteristics, screening performance and processing capacity of the screen. In this paper, a mathematical model of the double-deck vibrating flip-flow screen is proposed based on a vibrating system with three degrees of freedom. Based on the experiments of the industrial screen, the amplitude–frequency and phase–frequency characteristics of the double-deck vibrating flip-flow screen were studied. Within the range of 25 to 75 rad/s, the amplitude of the main screen frame decreased gradually, the floating screen frames decreased at first and then increased and the amplitudes of the main and floating screen frames were dependent on the stiffness of the isolation springs and shear springs. When the frequency was 75 rad/s, the stiffness of the upper and lower shear springs was 11,440 kN/m, respectively, and the screening efficiency reached 97.09%.


2021 ◽  
Author(s):  
Vu Linh Nguyen ◽  
Chin-Hsing Kuo ◽  
Po Ting Lin

Abstract This paper presents the gravity balancing reliability and sensitivity analysis of robotic manipulators with uncertainties. The gravity balancing reliability of the robot is defined as the probability that the reduction torque ratio of the robot reduces below a specified threshold. This index is of great importance for assessing and guaranteeing the balancing performance of the robot in the presence of uncertainties in input parameters. In this work, the balancing design for an industrial robot using the gear-spring modules (GSMs) is proposed with the adoption of a simulation-based analysis of the gravity effect of the robot. The Monte Carlo Simulation (MCS) method with normally distributed variables (i.e., link dimensions, masses, and spring stiffness coefficients) is employed to analyze and simulate the reliability. A case study with an industrial robot is then given to illustrate the reliability performance and the sensibility of the uncertain parameters. It is found that the gravity balancing behavior is achieved even when the uncertainties are applied. The uncertainties could deteriorate the balancing performance when increasing the standard deviations by more than seven percent of their means. The dimensional parameters enjoy the most critical influence on the balancing performance.


Author(s):  
Fridrik Magnus ◽  
Unnar B Arnalds ◽  
Heikki Palonen ◽  
Gunnar Karl Pálsson ◽  
Hasan Ali ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document