Determining Model Accuracy Requirements for Automotive Engine Coldstart Hydrocarbon Emissions Control

Author(s):  
Nasser L. Azad ◽  
Pannag R. Sanketi ◽  
J. Karl Hedrick

In this work, a systematic method is introduced to determine the required accuracy of an automotive engine model used for real-time optimal control of coldstart hydrocarbon (HC) emissions. The engine model structure and development are briefly explained and the model predictions versus experimental results are presented. The control design problem is represented with a dynamic optimization formulation on the basis of the engine model and solved using the Pontryagin’s minimum principle (PMP). To relate the level of plant/model mismatch and the control performance degradation in practice, a sensitivity analysis using a computationally efficient method is employed. In this way, the sensitivities or the effects of small parameter variations on the optimal solution, which is the minimum of cumulative tailpipe HC emissions over the coldstart period, are calculated. There is a good agreement between the sensitivity analysis results and the experimental data. The sensitivities indicate the directions of the subsequent parameter estimation and model improvement tasks to enhance the control-relevant accuracy, and thus, the control performance. Furthermore, they provide some insights to simplify the engine model, which is critical for real-time implementation of the coldstart optimal control system.

2011 ◽  
Vol 21 (1) ◽  
pp. 5-23 ◽  
Author(s):  
Navvab Kashiri ◽  
Mohammad Ghasemi ◽  
Morteza Dardel

An iterative method for time optimal control of dynamic systemsAn iterative method for time optimal control of a general type of dynamic systems is proposed, subject to limited control inputs. This method uses the indirect solution of open-loop optimal control problem. The necessary conditions for optimality are derived from Pontryagin's minimum principle and the obtained equations lead to a nonlinear two point boundary value problem (TPBVP). Since there are many difficulties in finding the switching points and in solving the resulted TPBVP, a simple iterative method based on solving the minimum energy solution is proposed. The method does not need finding the switching point so that the resulted TPBVP can be solved by usual algorithms such as shooting and collocation. Also, since the solution of TPBVPs is sensitive to initial guess, a short procedure for making the proper initial guess is introduced. To this end, the accuracy and efficiency of the proposed method is demonstrated using time optimal solution of some systems: harmonic oscillator, robotic arm, double spring-mass problem with coulomb friction and F-8 aircraft.


Sign in / Sign up

Export Citation Format

Share Document