Multiterm Extended Kantorovich Method for Three-Dimensional Elasticity Solution of Laminated Plates

2012 ◽  
Vol 79 (6) ◽  
Author(s):  
Santosh Kapuria ◽  
Poonam Kumari

In an article recently published in this journal, the powerful single-term extended Kantorovich method (EKM) originally proposed by Kerr in 1968 for two-dimensional (2D) elasticity problems was further extended by the authors to the three-dimensional (3D) elasticity solution for laminated plates. The single-term solution, however, failed to predict accurately the stress field near the boundaries; thus limiting its applicability. In this work, the method is generalized to the multiterm solution. The solution is developed using the Reissner-type mixed variational principle that ensures the same order of accuracy for displacements and stresses. An n-term solution generates a set of 8n algebraic-ordinary differential equations in the in-plane direction and a similar set in the thickness direction for each lamina, which are solved in close form. The problem of large eigenvalues associated with higher order terms is addressed. In addition to the composite laminates considered in the previous article, results are also presented for sandwich laminates, for which the inaccuracy in the single-term solution is even more prominent. It is shown that considering just one or two additional terms in the solution (n = 2 or 3) leads to a very accurate prediction and drastic improvement over the single-term solution (n = 1) for all entities including the stress field near the boundaries. This work will facilitate development of near-exact solutions of many important unresolved problems involving 3D elasticity, such as the free edge stresses in laminated structures under bending, tension and torsion.

2011 ◽  
Vol 78 (6) ◽  
Author(s):  
Santosh Kapuria ◽  
Poonam Kumari

The extended Kantorovich method originally proposed by Kerr in the year 1968 for two-dimensional (2D) elasticity problems is further extended to the three-dimensional (3D) elasticity problem of a transversely loaded laminated angle-ply flat panel in cylindrical bending. The significant extensions made to the method in this study are (1) the application to the 3D elasticity problem involving an in-plane direction and a thickness direction instead of both in-plane directions in 2D elasticity problems, (2) the treatment of the nonhomogeneous boundary conditions encountered in the thickness direction, and (3) the use of a mixed variational principle to obtain the governing differential equations in both directions in terms of displacements as well as stresses. This approach not only ensures exact satisfaction of all boundary conditions and continuity conditions at the layer interfaces, but also guarantees the same order of accuracy for all displacement and stress components. The method eventually leads to a set of eight algebraic-ordinary differential equations in the in-plane direction and a similar set of equations in the thickness direction for each layer of the laminate. Exact closed form solutions are obtained for each system of equations. It is demonstrated that the iterative procedure converges very fast irrespective of whether or not the initial guess functions satisfy the boundary conditions. Comparisons of the present predictions with the available 3D exact solutions and 3D finite element solutions for laminated cross-ply and angle-ply composite panels under different boundary conditions show a close agreement between them.


Author(s):  
Santosh Kapuria ◽  
Poonam Kumari

The powerful extended Kantorovich method (EKM) originally proposed by Kerr in 1968 is generalized to obtain a three-dimensional coupled piezoelasticity solution of smart piezoelectric laminated plates in cylindrical bending. Such solutions are needed to accurately predict the edge effects in these laminates under electromechanical loading. The Reissner-type mixed variational principle extended to piezoelasticity is used to develop the governing equations in terms of displacements, electric potential as well as stresses and electric displacements. It allows for exact satisfaction of the boundary conditions, including the non-homogeneous ones at all points. An n -term solution generates a set of 11 n algebraic ordinary differential equations in the inplane direction and a similar set in the thickness direction for each lamina, which are solved in closed form. The multi-term EKM is shown to predict the coupled electromechanical response, including the edge effects, of single-layer piezoelectric sensors as well as hybrid laminated panels accurately, for both pressure and electric potential loadings. This work will facilitate development of accurate semi-analytical solutions of many other unresolved problems in three-dimensional piezoelasticity, such as the free-edge stresses in hybrid laminates under bending, tension and twisting.


2016 ◽  
Vol 32 (3) ◽  
pp. 255-266
Author(s):  
M. Kazemi ◽  
G. Verchery

AbstractAn innovative optimization technique is presented for the design of composite laminated plates subjected to in-plane loads. A list of quasi-homogeneous laminates that can be used as angle-ply materials is proposed as a comprehensive solution for optimum lay-up. Two optimization procedures are performed: Dimensioning of the flexural stiffness and the elastic modulus, which provides the optimal orientations for the layers and offer highest in-plane resistance to composite laminated structures. The polar formalism for plane anisotropy is used to represent the flexural stiffness and elastic modulus tensors. Numerical examples are resolved for two materials with different elastic moduli.


Author(s):  
J. Sakai ◽  
Y. H. Park

Abstract Anisotropic composite cylinders and pressure vessels have been widely employed in automotive, aerospace, chemical and other engineering areas due to high strength/stiffness-to-weight ratio, exceptional corrosion resistance, and superb thermal performance. Pipes, fuel tanks, chemical containers, rocket motor cases and aircraft and ship elements are a few examples of structural application of fiber reinforced composites (FRCs) for pressure vessels/pipes. Since the performance of composite materials replies on the tensile and compressive strengths of the fiber directions, the optimum design of composite laminates with varying fiber orientations is desired to minimize the damage of the structure. In this study, a complete mathematical 3D elasticity solution was developed, which can accurately compute stresses of a thick multilayered anisotropic fiber reinforced pressure vessel under force and pressure loadings. A rotational variable is introduced in the formalism to treat torsional loading in addition to force and pressure loadings. Then, the three-dimensional Tsai-Wu criterion is used based on the analytical solution to predict the failure. Finally, a global optimization algorithm is used to find the optimum fiber orientation and their best combination through the thickness direction.


Sign in / Sign up

Export Citation Format

Share Document