Influence Coefficients of Stress Intensity Factors for Curved Tubing With a Semi-Elliptical Crack

2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Kirsten Plante ◽  
Choon-Lai Tan

The boundary element method is employed to determine polynomial influence coefficients of stress intensity factors, KI, for a semi-elliptical crack in internally pressurized thick-walled curved tubing. Numerical results of these coefficients are obtained for a wide range of geometric parameters; they are the bend radius ratio, cross-sectional radius ratio, angular extent of the bend, and relative crack depth. The use of influence coefficients allows KI solutions to be determined for different load cases without repetitive 3D stress analysis of the cracked body. This is demonstrated for the case of autofrettage where the effects on KI of the residual stresses arising from it are presented.

Author(s):  
Patrick Le Delliou ◽  
Bruno Barthelet

Crack assessment in engineering structures relies first on accurate evaluation of the stress intensity factors. In recent years, a large work has been conducted in France by the Atomic Energy Commission to develop influence coefficients for surface cracks in pipes. However, the problem of embedded cracks in plates (and pipes) which is also of practical importance has not received so much attention. Presently, solutions for elliptical cracks are available either in infinite solid with a polynomial distribution of normal loading or in plate, but restricted to constant or linearly varying tension. This paper presents the work conducted at EDF R&D to obtain influence coefficients for plates containing an elliptical crack with a wide range of the parameters: relative size (2a/t ratio), shape (a/c ratio) and crack eccentricity (2e/t ratio where e is the distance from the center of the ellipse to the plate mid plane). These coefficients were developed through extensive 3D finite element calculations: 200 geometrical configurations were modeled, each containing from 18000 to 26000 nodes. The limiting case of the tunnel crack (a/c = 0) was also analyzed with 2D finite element calculation (50 geometrical configurations). The accuracy of the results was checked by comparison with analytical solutions for infinite solids and, when possible, with solutions for finite-thickness plates (generally loaded in constant tension). These solutions will be introduced in the RSE-M Code that provides rules and requirements for in-service inspection of French PWR components.


Author(s):  
M. Perl ◽  
V. Bernstein

Some spherical pressure vessels are manufactured by methods such as the Integrated Hydro-Bulge Forming (IHBF) method, where the sphere is composed of a series of double curved petals welded along their meridional lines. Such vessels are susceptible to multiple radial cracking along the welds. For fatigue life assessment and fracture endurance of such vessels one needs to evaluate the Stress Intensity Factors (SIF) distribution along the fronts of these cracks. However, to date, only one 3-D solution for the SIF for a circumferential crack in a thick sphere is available, as well as 2-D SIFs for one through the thickness crack in thin spherical shells. In the present paper, mode I SIF distributions for a wide range of lunular and crescentic cracks are evaluated. The 3-D analysis is performed, via the FE method employing singular elements along the crack front, for five geometries representing thin, moderately thick, and thick spherical pressure vessels with outer to inner radius ratios of η = Ro/Ri = 1.01, 1.05, 1.1, 1.7, and 2.0. SIFs are evaluated for arrays containing n = 1–20 cracks; for a wide range of crack depth to wall thickness ratio, a/t, from 0.025 to 0.95; and for various ellipticities of the crack, i.e., the ratio of crack depth to semi crack length, a/c, from 0.2 to 1.5. The obtained results clearly indicate that the SIFs are considerably affected by the three-dimensionality of the problem and by the following parameters: the geometry of the sphere-η, the number of cracks in the array-n, the depth of the cracks-a/t, and their ellipticity-a/c.


2015 ◽  
Vol 39 (3) ◽  
pp. 557-568
Author(s):  
Shiuh-Chuan Her ◽  
Hao-Hi Chang

In this investigation, the weight function method was employed to calculate stress intensity factors for semi-elliptical surface crack in a hollow cylinder. A uniform stress and a linear stress distribution were used as the two references to determine the weight functions. These two factors were obtained by a three-dimensional finite element method which employed singular elements along the crack front and regular elements elsewhere. The weight functions were then applied to a wide range of semi-elliptical surface crack subjected to non-linear loadings. The results were validated against finite element data and compared with other analyses. In the parametric study, the effects of the ratio of the surface crack depth to length ranged from 0.2 to 1.0 and the ratio of the crack depth to the wall thickness ranged from 0.2 to 0.8 on stress intensity factors were investigated.


1980 ◽  
Vol 102 (4) ◽  
pp. 342-346 ◽  
Author(s):  
J. C. Newman ◽  
I. S. Raju

The purpose of this paper is to present stress-intensity factors for a wide range of semi-elliptical surface cracks on the inside of pressurized cylinders. The ratio of crack depth to crack length ranged from 0.2 to 1; the ratio of crack depth to wall thickness ranged from 0.2 to 0.8; and the ratio of wall thickness to vessel radius was 0.1 to 0.25. The stress-intensity factors were calculated by a three-dimensional finite-element method. The finite-element models employ singularity elements along the crack front and linear-strain elements elsewhere. The models had about 6500 degrees of freedom. The stress-intensity factors were evaluated from a nodal-force method. An equation for the stress-intensity factors was obtained from the results of the present analysis. The equation applies over a wide range of configuration parameters and was within about 5 percent of the present results. A comparison was also made between the present results and other analyses of internal surface cracks in cylinders. The results from a boundary-integral equation method were in good agreement (± 2 percent) and those from another finite-element method were in fair agreement (± 8 percent) with the present results.


Author(s):  
M. Perl ◽  
V. Bernstein

Some spherical pressure vessels are manufactured by methods such as the Integrated Hydro-Bulge Forming (IHBF) method, where the sphere is composed of a series of double curved petals welded along their meridional lines. Such vessels are susceptible to multiple radial cracking along the welds. For fatigue life assessment and fracture endurance of such vessels one needs to evaluate the Stress Intensity Factors SIF distribution along the fronts of these cracks. However, to date, only two-dimensional SIFs for one through the thickness crack in a thin spherical shells is available. In the present paper, mode I SIF distributions for a wide range of lunular and crescentic cracks are evaluated. The 3-D analysis is performed, via the FE method employing singular elements along the crack front, for three sphere geometries with outer to inner radius ratios of η = Ro/Ri = 1.1, 1.7, and 2.0. SIFs are evaluated for arrays containing n = 1–20 cracks,; for a wide range of crack depth to wall thickness ratio, a/t, from 0.025 to 0.8; and for various ellipticities of the crack, i.e., the ratio of crack depth to semi crack length, a/c, from 0.2 to 1.5. The obtained results clearly indicate that the SIFs are considerably affected by the three-dimensionality of the problem and by the geometrical parameters: the geometry of the sphere – η, the number of cracks in the array – n, the depth of the crack – a/t, and its ellipticity – a/c.


2009 ◽  
Vol 44 (4) ◽  
pp. 297-304 ◽  
Author(s):  
K I Plante ◽  
C-L Tan

In this paper, the boundary element method is used to obtain the mode I stress intensity factors (SIFs) for a semi-elliptical crack in thick-walled curved tubing or elbow under internal pressure. A relatively wide range of geometric parameters for the tubing – the bend radius ratio, the cross-sectional radius ratio, and the angular extent of the circular bend – is considered. For each case of the curved tube geometry, a crack of semi-minor to semi-major axis ratio of 0.8, with depth varying from 20 per cent to 80 per cent of the wall thickness at the intrados is analysed. The computed values of the normalized SIFs are shown to be higher than those corresponding to a straight cylinder for the same relative crack depth and cross-sectional radius ratio. They are also found not to vary significantly along much of the crack periphery in the cases considered, increasing rapidly only as the free surface is approached. Furthermore, for a given relative crack size and location, they increase with decreasing bend radius ratio and decreasing cross-sectional radius ratio, but are, however, less sensitive to the angular extent of the elbow.


1997 ◽  
Vol 32 (3) ◽  
pp. 229-236 ◽  
Author(s):  
X B Lin ◽  
R A Smith

Stress intensity factors for semi-elliptical surface cracks located at the centre of a semicircular edge notch in a finite thickness plate subjected to a remote tensile load are presented in a tabulated format. A wide range of geometry ratios are considered. They are all combinations of the following ratios: the ratio of crack surface half-length to plate half-thickness, c/t = 0.2, 0.4, 0.6, 0.8 and 0.95; the ratio of crack depth to surface half-length, a/c = 0.2, 0.4, 0.6, 0.8 and 1; and the ratio of notch radius to plate half-thickness, r/t = 0.5, 1, 2 and 3. Both the quarter-point displacement and J.-integral methods based on three-dimensional finite element analyses were employed for the calculation of stress intensity factors. The calculation accuracy was studied by analysing the J.-integral path independence and comparing stress intensity factor results with other solutions available in the literature.


Author(s):  
Kunio Hasegawa ◽  
Yinsheng Li

Stress intensity factors (SIFs) for pipes with semi-elliptical cracks containing large aspect ratios were calculated by finite element analysis. The cracks were circumferential and axial surface cracks inside the pipes. The parameters of the SIFs are crack aspect ratio, crack depth and the ratio of pipe radius to wall thickness. In comparing SIFs for plates and pipes, it can be clarified that SIFs for both plates and thin pipes with t/Ri ≤1/10 are almost the same, and the SIFs for plates are used as a substitute for pipes with t/Ri ≤1/10, where t is the pipe wall thickness and Ri is the inner radius of the pipe. This means that it is not necessary to provide SIF solutions for pipes with t/Ri ≤1/10, and it is suggested that number of tables for influence coefficients G values for pipes can significantly reduce.


Sign in / Sign up

Export Citation Format

Share Document