Three Dimensional Film Stability and Draw Resonance

2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Zahir U. Ahmed ◽  
Roger E. Khayat

In order to understand the effects of inertia and gravity on draw resonance and on the physical mechanism of draw resonance in three-dimensional Newtonian film casting, a linear stability analysis has been conducted. An eigenvalue problem resulting from the linear stability analysis is formulated and solved as a nonlinear two-point boundary value problem to determine the critical draw ratios. Neutral stability curves are plotted to separate the stable/unstable domain in different appropriate parameter spaces. Both inertia and gravity stabilize the process and the process is more unstable to two- than to three-dimensional disturbances. The effects of inertia and gravity on the physical mechanism of draw resonance have been investigated using the eigenfunctions from the eigenvalue problem. A new approach is introduced in order to evaluate the traveling times of kinematic waves from the perturbed thickness at the take-up, which satisfies the same stability criterion illustrating the general stability of the system.

2002 ◽  
Vol 455 ◽  
pp. 1-19 ◽  
Author(s):  
CHO LIK CHAN ◽  
WEN-YAU CHEN ◽  
C. F. CHEN

The three-dimensional motion observed by Chen & Chen (1997) in the convection cells generated by sideways heating of a solute gradient is further examined by experiments and linear stability analysis. In the experiments, we obtained visualizations and PIV measurements of the velocity of the fluid motion in the longitudinal plane perpendicular to the imposed temperature gradient. The flow consists of a horizontal row of counter-rotating vortices within each convection cell. The magnitude of this secondary motion is approximately one-half that of the primary convection cell. Results of a linear stability analysis of a parallel double-diffusive flow model of the actual ow show that the instability is in the salt-finger mode under the experimental conditions. The perturbation streamlines in the longitudinal plane at onset consist of a horizontal row of counter-rotating vortices similar to those observed in the experiments.


2017 ◽  
Vol 822 ◽  
pp. 813-847 ◽  
Author(s):  
Azan M. Sapardi ◽  
Wisam K. Hussam ◽  
Alban Pothérat ◽  
Gregory J. Sheard

This study seeks to characterise the breakdown of the steady two-dimensional solution in the flow around a 180-degree sharp bend to infinitesimal three-dimensional disturbances using a linear stability analysis. The stability analysis predicts that three-dimensional transition is via a synchronous instability of the steady flows. A highly accurate global linear stability analysis of the flow was conducted with Reynolds number $\mathit{Re}<1150$ and bend opening ratio (ratio of bend width to inlet height) $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 5$. This range of $\mathit{Re}$ and $\unicode[STIX]{x1D6FD}$ captures both steady-state two-dimensional flow solutions and the inception of unsteady two-dimensional flow. For $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 1$, the two-dimensional base flow transitions from steady to unsteady at higher Reynolds number as $\unicode[STIX]{x1D6FD}$ increases. The stability analysis shows that at the onset of instability, the base flow becomes three-dimensionally unstable in two different modes, namely a spanwise oscillating mode for $\unicode[STIX]{x1D6FD}=0.2$ and a spanwise synchronous mode for $\unicode[STIX]{x1D6FD}\geqslant 0.3$. The critical Reynolds number and the spanwise wavelength of perturbations increase as $\unicode[STIX]{x1D6FD}$ increases. For $1<\unicode[STIX]{x1D6FD}\leqslant 2$ both the critical Reynolds number for onset of unsteadiness and the spanwise wavelength decrease as $\unicode[STIX]{x1D6FD}$ increases. Finally, for $2<\unicode[STIX]{x1D6FD}\leqslant 5$, the critical Reynolds number and spanwise wavelength remain almost constant. The linear stability analysis also shows that the base flow becomes unstable to different three-dimensional modes depending on the opening ratio. The modes are found to be localised near the reattachment point of the first recirculation bubble.


2015 ◽  
Vol 784 ◽  
pp. 252-273 ◽  
Author(s):  
Eric Arobone ◽  
Sutanu Sarkar

Linear stability analysis and direct numerical simulation are used to investigate the evolution of a symmetrically unstable uniform frontal zone. Simulations in a three-dimensional computational domain capable of resolving near-symmetric currents develop strong nonlinearities without the emergence of pure symmetric instability. Linear stability analysis demonstrates that for $ft>1$ ( $f$ is the Coriolis parameter and $t$ denotes time) the flow generates strongly asymmetric structures which become nearly symmetric when $ft\gg 1$. Unlike the currents generated during pure symmetric instability, near-symmetric instability generates currents that do not align with isopycnals. This greatly modifies their energetics and evolution, leading to regions of the flow that are unstable to gravitational instability and energized by the reservoir of available potential energy. A high-resolution simulation demonstrates the flow evolution from near-symmetric currents to secondary shear-convective instabilities and finally, through tertiary instabilities, to fully three-dimensional turbulence. The effect of this sequence of instabilities is quantified through velocity and vorticity statistics as well as budgets for turbulent kinetic and potential energy. It is not until $ft\sim 10$ that the energy source for fluctuations is primarily shear, in contrast to the purely symmetric instability which draws its energy exclusively from shear production.


Sign in / Sign up

Export Citation Format

Share Document