frontal zone
Recently Published Documents


TOTAL DOCUMENTS

378
(FIVE YEARS 49)

H-INDEX

41
(FIVE YEARS 4)

2021 ◽  
Author(s):  
◽  
Melanie Anne Liston

<p>The Southern Ocean has a central role in regulating global climate change. Research has shown evidence of changes in biological productivity are coincident with increased iron deposition and rising atmospheric CO2 concentrations. The current data suggests these processes occur homogenously throughout the Southern Ocean, where research largely focuses on changes in biogenic silica as a proxy for upwelling and enhanced opal production. The role of calcium carbonate productivity, however, is rarely discussed, or is referred to in terms of preservation changes associated with shoaling and deepening of the lysocline. This assumption ignores potentially important effects of carbonate productivity and inter-basin complexities on ocean-atmosphere CO2 exchange. Two gravity cores (TAN1302-96 and TAN1302-97) collected from the southwest Pacific Polar Frontal Zone (PFZ) provide more insight into productivity changes and inter-basin differences across glacial-interglacial timescales. Detailed geochemical analysis, together with δ18O stratigraphy and 14C chronology, were used to reconstruct glacial-interglacial changes in terrigenous input and paleoproductivity in the PFZ. Sedimentological and biological analyses provide additional information to support the geochemical observations. This study highlights two distinct productivity modes (i.e. biogenic silica and calcium carbonate) that vary over glacial-interglacial timescales and with respect to the position of the Polar Front (PF). Key findings include; 1) a systematic series of key biological changes are repeated during glacial Terminations I (TI) and II (TII), the order of which depends on the position relative to the PF; 2) calcium carbonate productivity dominates the early part of the Termination north of the PF, whereas the production of biogenic silica dominates the early Termination south of the PF; 3) following TI and TII, calcium carbonate leads productivity in the early interglacials (i.e. MIS 5e and the Holocene), followed by the production of biogenic silica during the late interglacials, concurrent with declining atmospheric CO2 concentrations.</p>


2021 ◽  
Author(s):  
◽  
Melanie Anne Liston

<p>The Southern Ocean has a central role in regulating global climate change. Research has shown evidence of changes in biological productivity are coincident with increased iron deposition and rising atmospheric CO2 concentrations. The current data suggests these processes occur homogenously throughout the Southern Ocean, where research largely focuses on changes in biogenic silica as a proxy for upwelling and enhanced opal production. The role of calcium carbonate productivity, however, is rarely discussed, or is referred to in terms of preservation changes associated with shoaling and deepening of the lysocline. This assumption ignores potentially important effects of carbonate productivity and inter-basin complexities on ocean-atmosphere CO2 exchange. Two gravity cores (TAN1302-96 and TAN1302-97) collected from the southwest Pacific Polar Frontal Zone (PFZ) provide more insight into productivity changes and inter-basin differences across glacial-interglacial timescales. Detailed geochemical analysis, together with δ18O stratigraphy and 14C chronology, were used to reconstruct glacial-interglacial changes in terrigenous input and paleoproductivity in the PFZ. Sedimentological and biological analyses provide additional information to support the geochemical observations. This study highlights two distinct productivity modes (i.e. biogenic silica and calcium carbonate) that vary over glacial-interglacial timescales and with respect to the position of the Polar Front (PF). Key findings include; 1) a systematic series of key biological changes are repeated during glacial Terminations I (TI) and II (TII), the order of which depends on the position relative to the PF; 2) calcium carbonate productivity dominates the early part of the Termination north of the PF, whereas the production of biogenic silica dominates the early Termination south of the PF; 3) following TI and TII, calcium carbonate leads productivity in the early interglacials (i.e. MIS 5e and the Holocene), followed by the production of biogenic silica during the late interglacials, concurrent with declining atmospheric CO2 concentrations.</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Dongyoung Kim ◽  
Rubao Ji ◽  
Hyun Je Park ◽  
Zhixuan Feng ◽  
Jaebin Jang ◽  
...  

A subpolar front (SPF) generated between the East Korea Warm Current (EKWC) and the North Korea Cold Current (NKCC) in the western margin of the East/Japan Sea has shifted northward in recent decades. This study investigated the biomass and composition of the phytoplankton assemblage in relation to hydrological and biogeochemical features in the shallow shelf and slope off the Korean coast from January to June in 2016 and 2017, to determine the mechanistic effects of SPF on spring–summer phytoplankton bloom dynamics. Monthly average depth-integrated chlorophyll a (Chl a) levels and the contribution of phytoplankton classes revealed bimodal diatom blooms in early spring and summer in the frontal zone. Canonical correspondence analysis showed that the distribution of high Chl a was associated with cold, low-salinity NKCC water in March 2016. No Chl a peak was observed in March 2017 when the warm saline EKWC water mass invaded. These results suggest that the NKCC intrusion acts as a forcing mechanism leading to enhanced phytoplankton biomass in the frontal zone. In contrast, positive correlations of Chl a concentration with water density and nutrient concentrations suggest that summer blooms were fed by the subsurface chlorophyll maximum (SCM) driven by shoaling of the pycnocline and nitracline. Varying water-column stratification determined the thickness of the SCM layer, driving year-to-year variability in the magnitude of diatom blooms. These findings further suggest that seasonal/interannual variability in the timing of algal blooms affects regional trophodynamics and hence could be an important factor in explaining ecosystem changes in this region.


2021 ◽  
pp. 102727
Author(s):  
S. Valiente ◽  
B. Fernández-Castro ◽  
R. Campanero ◽  
A. Marrero-Díaz ◽  
A. Rodríguez-Santana ◽  
...  

2021 ◽  
Vol 9 (11) ◽  
pp. 1233
Author(s):  
Yuyao Liu ◽  
Wei Chen ◽  
Yu Chen ◽  
Wen Chen ◽  
Lina Ma ◽  
...  

As one of the most common mesoscale phenomena in the ocean, the ocean front is defined as a narrow transition zone between two water masses with obviously different properties. In this study, we proposed an ocean front reconstruction method based on the K-means algorithm iterative hierarchical clustering sound speed profile (SSP). This method constructed the frontal zone from the perspective of SSP. Meanwhile, considering that acoustic ray tracing is a very sensitive tool for detecting the location of ocean fronts because of the strong dependence of the transmission loss (TL) on SSP structure, this paper verified the feasibility of the method from the perspective of the TL calculation. Compared with other existing methods, this method has the key step of iterative hierarchical clustering according to the accuracy of clustering results. The results of iterative hierarchical clustering of the SSP can reconstruct the ocean front. Using this method, we reconstructed the ocean front in the Gulf Stream-related sea area and obtained the three-dimensional structure of the Gulf Stream front (GSF). The three-dimensional structure was divided into seven layers in the depth range of 0–1000 m. Iterative hierarchical clustering SSP by K-means algorithm provides a new method for judging the frontal zone and reconstructing the geometric model of the ocean front in different depth ranges.


2021 ◽  
pp. 102691
Author(s):  
Hatsumi Nishikawa ◽  
Humio Mitsudera ◽  
Takeshi Okunishi ◽  
Shin-ichi Ito ◽  
Taku Wagawa ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Chelsea Nicole Lopez ◽  
Dennis Arthur Hansell

Here we provide compelling evidence that deep particle export enhanced dissolved organic carbon (DOC) concentrations beneath the Pacific’s Subarctic Front (SA, ∼42°N) and Northern Subtropical Front (NST, ∼34°N). We report three main findings: First, deep export of subjectively small particles (128–512 μm) was apparent throughout the frontal zone in which the SA resides. However, export of large particles was specifically associated with the SA, rather than the entire frontal zone, and appeared to exclusively transfer DOC into the bathypelagic water column. Second, a similar DOC enrichment existed beneath the NST, though this signal was curiously not accompanied by observable particles (&gt;128 μm). We conclude that export occurring previously in winter left this DOC behind as a residue, though the associated particles were no longer present by spring. Third, the presence of strong hydrographic fronts was not the only control on export that resulted in these unique DOC distributions. Deep export and DOC enrichment was also controlled by latitude-specific biogeochemical and hydrographic conditions, such as depth of the nutricline and seasonal mixed layer shoaling. Given these observations, the fronts within the transitional region of the North Pacific are clearly special locations for deep carbon sequestration and for providing uncommon DOC enrichment that ultimately supports the deep microbial community.


2021 ◽  
Vol 11 (18) ◽  
pp. 8461
Author(s):  
Yuyao Liu ◽  
Wei Chen ◽  
Wen Chen ◽  
Yu Chen ◽  
Lina Ma ◽  
...  

As a mesoscale phenomenon of the ocean, the ocean front can directly affect the structural characteristics of sound speed profiles and further affect the acoustic propagation characteristics of the sea area. In this paper, we use the fuzzy C-means (FCM) algorithm to cluster the surface sound speed in the sea area of the Kuroshio Extension (KE) and detect the frontal zone of Kuroshio Extension (KEF). At the same time, the sound speed profile (SSP) is used instead of the temperature profile to establish the model of the sound speed field in the front area of the Kuroshio Extension and to improve the theoretical model of the ocean front. Compared with the actual ocean front calculated by reanalysis data, the root means square error (RSME) of the transmission loss (TL) calculated by the model is controlled below 6 dB, which proves the validity of the model. Finally, we propose the melt function in the model to forecast the depth change of the acoustic convergence area. Compared with the actual calculation result based on reanalysis data, the root means square error (RSME) of the depth forecasting after the frontal zone is 43.3 m. This reconstruction method does not rely on the high spatial resolution data of the whole sea depth and can be of referential significance to acoustic detection in the ocean front environment.


Oceanology ◽  
2021 ◽  
Vol 61 (5) ◽  
pp. 625-631
Author(s):  
A. A. Polukhin ◽  
M. V. Flint ◽  
I. B. Belikov ◽  
G. V. Gusak ◽  
U. A. Kazakova ◽  
...  

Abstract The values and direction of carbon dioxide flux in the area of the continental slope in the north of the Kara Sea (St. Anna Trough) are calculated based on field studies in 2020 within the Siberian Arctic Sea Ecosystems program. The existence of a stable frontal zone in this area has been confirmed, which is formed by an alongslope current and limits the northward spread of surface waters freshened by the continental runoff. The simultaneous analysis of the carbonate system in the upper sea layer and the CO2 concentration in the surface air layer shows the CO2 flux with a rate of 0.2 to 22 mmol/m2 day to be directed from the atmosphere into the water in the area of the outer shelf, which is affected by the river runoff, and in the area of the continental slope, which is beyond this effect. The highest rates of CO2 absorption by the sea surface layer are localized above the continental slope. Local processes in the area of the slope frontal zone determine the CO2 emission into the atmosphere with a rate of 0.34 mmol/m2 day.


Sign in / Sign up

Export Citation Format

Share Document