scholarly journals Discussion: “Free Convection, Forced Convection, and Acoustic Vibrations in a Constant Temperature Vertical Tube” (Jackson, T. W., Harrison, W. B., and Boteler, W. C., 1959, ASME J. Heat Transfer, 81, pp. 68–74)

1959 ◽  
Vol 81 (1) ◽  
pp. 74
Author(s):  
Frank Kreith
1959 ◽  
Vol 81 (1) ◽  
pp. 68-74 ◽  
Author(s):  
T. W. Jackson ◽  
W. B. Harrison ◽  
W. C. Boteler

Experimental studies of heat transfer to air with superposed forced and free convection were reported in a previous paper [1]. In studies reported in this paper, the same experimental system was employed, but a complication was added in the form of acoustic vibrations in the flow field. By comparison of the results with and without acoustic vibrations under conditions which were otherwise the same, an effort has been made to determine the effect of acoustic vibrations on heat transfer. The Nusselt modulus, based on the log mean temperature difference, ranged from 17.2 to 50.6; the Graetz modulus, based on the bulk or average temperature of the air, ranged from 40.2 to 1633; and the Grashof-Prandtl D/L modulus, based on properties of air at the wall temperature, ranged from 0.967 × 105 to 1.26 × 106. The results indicated that sound pressure levels below approximately 118 decibels had little effect on the heat-transfer coefficient. Below 118 decibels free convection forces were evident. Above 118 decibels free convection forces were apparently negligible and the effect of sound appeared to be considerable.


1978 ◽  
Vol 100 (3) ◽  
pp. 429-434 ◽  
Author(s):  
H. Imura ◽  
R. R. Gilpin ◽  
K. C. Cheng

The flow over a horizontal isothermally heated plate at Reynolds numbers below that at which hydrodynamic instabilities exist, is characterized by a region of laminar forced convection near the leading edge, followed by the onset of longitudinal vortices and their growth to a finite amplitude and finally a transition to a turbulent flow regime. Results are presented for the temperature profiles, the thermal boundary layer thickness, and the local Nusselt number. They are used to identify the various flow regimes. It was found that the transition from laminar forced convection to turbulent convection was characterized by the parameter Grx/Rex1.5 falling in the range 100 to 300. For values of this parameter greater than 300 the heat transfer rates were independent of Reynolds number and typical of those for turbulent free convection from a horizontal surface.


1984 ◽  
Vol 106 (2) ◽  
pp. 297-303 ◽  
Author(s):  
L. C. Chow ◽  
S. R. Husain ◽  
A. Campo

A numerical investigation was conducted to study the simultaneous effects of free convection and axial conduction on forced-convection heat transfer inside a vertical channel at low Peclet numbers. Insulated entry and exit lengths were provided in order to assess the effect of upstream and downstream energy penetration due to axial conduction. The fluid enters the channel with a parabolic velocity and uniform temperature profiles. A constant-property (except for the buoyancy term), steady-state case was assumed for the analysis. Results were categorized into two main groups, the first being the case where the channel walls were hotter than the entering fluid (heating), and the second being the reverse of the first (cooling). For each group, heat transfer between the fluid and the walls were given as functions of the Grashof, Peclet, and Reynolds numbers.


Sign in / Sign up

Export Citation Format

Share Document