subcooled liquid
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 29)

H-INDEX

22
(FIVE YEARS 2)

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1471
Author(s):  
Gina Kaysan ◽  
Alexander Rica ◽  
Gisela Guthausen ◽  
Matthias Kind

The production of melt emulsions is mainly influenced by the crystallization step, as every single droplet needs to crystallize to obtain a stable product with a long shelf life. However, the crystallization of dispersed droplets requires high subcooling, resulting in a time, energy and cost intensive production processes. Contact-mediated nucleation (CMN) may be used to intensify the nucleation process, enabling crystallization at higher temperatures. It describes the successful inoculation of a subcooled liquid droplet by a crystalline particle. Surfactants are added to emulsions/suspensions for their stabilization against coalescence or aggregation. They cover the interface, lower the specific interfacial energy and form micelles in the continuous phase. It may be assumed that micelles and high concentrations of surfactant monomers in the continuous phase delay or even hinder CMN as the two reaction partners cannot get in touch. Experiments were carried out in a microfluidic chip, allowing for the controlled contact between a single subcooled liquid droplet and a single crystallized droplet. We were able to demonstrate the impact of the surfactant concentration on the CMN. Following an increase in the aqueous micelle concentrations, the time needed to inoculate the liquid droplet increased or CMN was prevented entirely.


2021 ◽  
Vol 2088 (1) ◽  
pp. 012048
Author(s):  
N V Vasil’ev ◽  
Yu A Zeigarnik ◽  
K A Khodakov ◽  
S N Vavilov ◽  
A S Nikishin

Abstract An experimental study of the characteristics of single (solitary) bubbles obtained by means of focused laser heating of the surface during the boiling of two subcooled liquids with significantly different properties: water and refrigerant R113 has been carried out. To obtain the most complete detailed information, the technique of synchronized high-speed video filming of the process in two mutually perpendicular planes with a frame rate of up to 150 kHz was used. It is shown that during the boiling of a subcooled liquid, the main mechanism of heat removal from the bubble dome into the surrounding liquid is an unsteady heat conductance. Differences in the behavior of solitary vapor bubbles in the case of boiling of two liquids (water and refrigerant R113) are shown.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012049
Author(s):  
P K Kanin ◽  
V V Yagov ◽  
A R Zabirov ◽  
M A Lexin

Abstract Cooling in film boiling is usually an unwanted process in many technologies due to low intensity of heat transfer. Thus, predicting the solid wall superheat at vapor film destabilization is useful to avoid this phenomenon. In the present paper, two new semi-empirical models for evaluation of the wall superheat at destabilization of vapor film around the metallic body cooled in saturated or in subcooled liquid are proposed. Both models with fitted empirical multipliers are in good agreement with an experimental dataset. To evaluate the contribution of the natural convection in the model for temperature head at cooling in subcooled liquid, a problem about the natural convection near the vapor film, occurring during film boiling along the vertical plane, is numerically solved by means of ANES20XE CFD-code. The computational results of longitudinal velocity are in good agreement with the theoretical velocity of natural convection used in the model.


Author(s):  
Anton Surtaev ◽  
Vladimir Serdyukov ◽  
Ivan Malakhov ◽  
Alexey Safarov

2021 ◽  
Author(s):  
Satoshi Endo

COSMO-RS-trained fragment contribution models (FCMs) to predict partition properties of chlorinated paraffin (CP) congeners were refined and extended. The improvement includes (i) the use of an improved conformer generation method for COSMO-RS, (ii) extension of training and validation sets for FCMs up to C<sub>20</sub> congeners covering short-chain (SCCPs), medium-chain (MCCPs) and long-chain CPs (LCCPs), and (iii) more realistic simulation of industrial CP mixture compositions by using a stochastic algorithm. Extension of the training set markedly improved the accuracy of model predictions for MCCPs and LCCPs, as compared to the previous study. The predicted values of the log octanol/water partition coefficients (<i>K</i><sub>ow</sub>) for CP mixtures agreed well with experimentally determined values from the literature. Using the established FCMs, this study provided a set of quantum chemically based predictions for 193 congener groups (C<sub>10–20</sub>, Cl<sub>0–21</sub>) regarding <i>K</i><sub>ow</sub>, air/water (<i>K</i><sub>aw</sub>), and octanol/air (<i>K</i><sub>oa</sub>) partition coefficients, subcooled liquid vapor pressure (VP) and aqueous solubility (<i>S</i><sub>w</sub>) in a temperature range of 5–45 °C as well as the respective enthalpy and internal energy changes.<br><br>This is a preprint version and has not yet been peer reviewed.


2021 ◽  
Author(s):  
Satoshi Endo

COSMO-RS-trained fragment contribution models (FCMs) to predict partition properties of chlorinated paraffin (CP) congeners were refined and extended. The improvement includes (i) the use of an improved conformer generation method for COSMO-RS, (ii) extension of training and validation sets for FCMs up to C<sub>20</sub> congeners covering short-chain (SCCPs), medium-chain (MCCPs) and long-chain CPs (LCCPs), and (iii) more realistic simulation of industrial CP mixture compositions by using a stochastic algorithm. Extension of the training set markedly improved the accuracy of model predictions for MCCPs and LCCPs, as compared to the previous study. The predicted values of the log octanol/water partition coefficients (<i>K</i><sub>ow</sub>) for CP mixtures agreed well with experimentally determined values from the literature. Using the established FCMs, this study provided a set of quantum chemically based predictions for 193 congener groups (C<sub>10–20</sub>, Cl<sub>0–21</sub>) regarding <i>K</i><sub>ow</sub>, air/water (<i>K</i><sub>aw</sub>), and octanol/air (<i>K</i><sub>oa</sub>) partition coefficients, subcooled liquid vapor pressure (VP) and aqueous solubility (<i>S</i><sub>w</sub>) in a temperature range of 5–45 °C as well as the respective enthalpy and internal energy changes.<br><br>This is a preprint version and has not yet been peer reviewed.


2021 ◽  
Vol 160 ◽  
pp. 106674 ◽  
Author(s):  
Paria Khosravifar ◽  
Sajjad Ahangar Zonouzi ◽  
Habib Aminfar ◽  
Mousa Mohammadpourfard

Sign in / Sign up

Export Citation Format

Share Document