Fluid-Structure Interaction Analysis of Pulsatile Blood Flow and Heat Transfer in Living Tissues During Thermal Therapy

2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Abdalla Mohamed AlAmiri

The current numerical investigation tackles the fluid-structure interaction in a blood vessel subjected to a prescribed heating scheme on tumor tissues under thermal therapy. A pulsating incompressible laminar blood flow was employed to examine its impact on the flow and temperature distribution within the blood vessel. In addition, the arterial wall was modeled using the volume-averaged porous media theory. The motion of a continuous and deformable arterial wall can be described by a continuous displacement field resulting from blood pressure acting on the tissue. Moreover, discretization of the transport equations was achieved using a finite element scheme based on the Galerkin method of weighted residuals. The numerical results were validated by comparing them against documented studies in the literature. Three various heating schemes were considered: constant temperature, constant wall flux, and a step-wise heat flux. The first two uniform schemes were found to exhibit large temperature variation within the tumor, which might affect the surrounding healthy tissues. Meanwhile, larger vessels and flexible arterial wall models render higher variation of the temperature within the treated tumor, owing to the enhanced mixing in the vicinity of the bottom wall.

Author(s):  
Esfandyar Kouhi ◽  
Yos Morsi

In this paper the fluid structure interaction in stentless aortic heart valve during acceleration phase was performed successfully using the commercial ANSYS/CFX package. The aim is to provide unidirectional coupling FSI analysis of physiological blood flow within an anatomically corrected numerical model of stentless aortic valve. Pulsatile, Newtonian, and turbulent blood flow rheology at aortic level was applied to fluid domain. The proposed structural prosthesis had a novel multi thickness leaflet design decreased from aortic root down to free age surface. An appropriate interpolation scheme used to import the fluid pressure on the structure at their interface. The prosthesis deformations over the acceleration time showed bending dominant characteristic at early stages of the cardiac cycle. More stretching and flattening observed in the rest of the times steps. The multi axial Von Mises stress data analysis was validated with experimental data which confirmed the initial design of the prosthesis.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Daphne Meza ◽  
David A. Rubenstein ◽  
Wei Yin

A fluid–structure interaction (FSI) model of a left anterior descending (LAD) coronary artery was developed, incorporating transient blood flow, cyclic bending motion of the artery, and myocardial contraction. The three-dimensional (3D) geometry was constructed based on a patient's computed tomography angiography (CTA) data. To simulate disease conditions, a plaque was placed within the LAD to create a 70% stenosis. The bending motion of the blood vessel was prescribed based on the LAD spatial information. The pressure induced by myocardial contraction was applied to the outside of the blood vessel wall. The fluid domain was solved using the Navier–Stokes equations. The arterial wall was defined as a nonlinear elastic, anisotropic, and incompressible material, and the mechanical behavior was described using the modified hyper-elastic Mooney–Rivlin model. The fluid (blood) and solid (vascular wall) domains were fully coupled. The simulation results demonstrated that besides vessel bending/stretching motion, myocardial contraction had a significant effect on local hemodynamics and vascular wall stress/strain distribution. It not only transiently increased blood flow velocity and fluid wall shear stress, but also changed shear stress patterns. The presence of the plaque significantly reduced vascular wall tensile strain. Compared to the coronary artery models developed previously, the current model had improved physiological relevance.


Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 11 ◽  
Author(s):  
Yorgos Stergiou ◽  
Athanasios Kanaris ◽  
Aikaterini Mouza ◽  
Spiros Paras

The Abdominal Aortic Aneurysm (AAA) is a local dilation of the abdominal aorta and it is a cause for serious concern because of the high mortality associated with its rupture. Consequently, the understanding of the phenomena related to the creation and the progression of an AAA is of crucial importance. In this work, the complicated interaction between the blood flow and the AAA wall is numerically examined using a fully coupled Fluid-Structure Interaction (FSI) method. The study investigates the possible link between the dynamic behavior of an AAA and the blood viscosity variations attributed to the haematocrit value, while it also incorporates the pulsatile blood flow, the non-Newtonian behavior of blood and the hyperelasticity of the arterial wall. It was found that blood viscosity has no significant effect on von Mises stress magnitude and distribution, whereas there is a close relation between the haematocrit value and the Wall Shear Stress (WSS) magnitude in AAAs. This WSS variation can possibly alter the mechanical properties of the arterial wall and increase its growth rate or even its rupture possibility. The relationship between haematocrit and dynamic behavior of an AAA can be helpful in designing a patient specific treatment.


2014 ◽  
Vol 54 (4) ◽  
pp. 1055-1071 ◽  
Author(s):  
Ming-Chen Hsu ◽  
David Kamensky ◽  
Yuri Bazilevs ◽  
Michael S. Sacks ◽  
Thomas J. R. Hughes

Author(s):  
Yorgos G. Stergiou ◽  
Athanasios G. Kanaris ◽  
Aikaterini A. Mouza ◽  
Spiros V. Paras

The Abdominal Aortic Aneurysm (AAA) is a local dilation of the abdominal aorta and it is a cause for serious concern because of the high mortality associated with its rupture. Consequently, the understanding of the phenomena related to the creation and the progression of an AAA is of crucial importance. In this work the complicated interaction between the blood flow and the AAA wall is numerically examined using a fully coupled Fluid-Structure Interaction (FSI) method. The study investigates the possible link between the dynamic behaviour of an AAA and the blood viscosity variations attributed to the haematocrit value, while it also incorporates the pulsatile blood flow, the non-Newtonian behaviour of blood and the hyperelasticity of the arterial wall. It was found that blood viscosity has no significant effect on von Mises stress magnitude and distribution, whereas there is a close relation between the haematocrit value and the Wall Shear Stress (WSS) magnitude in AAAs. This WSS variation can possibly alter the mechanical properties of the arterial wall and increase its growth rate or even its rupture possibility. The relationship between haematocrit and dynamic behaviour of an AAA can be helpful in designing a patient specific treatment.


Author(s):  
Alejandro Roldán ◽  
Nancy Sweitzer ◽  
Tim Osswald ◽  
Naomi Chesler

Modeling pulsatile flow past heart valves remains a relatively unexplored but critical area. Due to the geometric complexity and the interaction between the flowing blood and the heart valve leaflets, existing numerical techniques that require domain discretization, such as finite element methods or finite difference techniques, cannot fully represent the moving and deforming boundaries present in an operating valve. Our aim is to develop a technique to model the flow through heart valves which includes the interaction between the blood flow and the valve leaflets using the radial functions method (RFM). The RFM is a meshless technique that fully accounts for moving and deforming surfaces and thus is well suited to model the blood flow and its interaction with leaflet motion. Here we present a 2D fluid structure interaction (FSI) model of the blood flow through a bileaflet mechanical heart valve (MHV).


Sign in / Sign up

Export Citation Format

Share Document