Fluid Structure Interaction Analysis of Stentless Bio-Prosthetic Aortic Heart Valve in Sinus of Valsalva

Author(s):  
Esfandyar Kouhi ◽  
Yos Morsi

In this paper the fluid structure interaction in stentless aortic heart valve during acceleration phase was performed successfully using the commercial ANSYS/CFX package. The aim is to provide unidirectional coupling FSI analysis of physiological blood flow within an anatomically corrected numerical model of stentless aortic valve. Pulsatile, Newtonian, and turbulent blood flow rheology at aortic level was applied to fluid domain. The proposed structural prosthesis had a novel multi thickness leaflet design decreased from aortic root down to free age surface. An appropriate interpolation scheme used to import the fluid pressure on the structure at their interface. The prosthesis deformations over the acceleration time showed bending dominant characteristic at early stages of the cardiac cycle. More stretching and flattening observed in the rest of the times steps. The multi axial Von Mises stress data analysis was validated with experimental data which confirmed the initial design of the prosthesis.

Author(s):  
Alejandro Roldán ◽  
Nancy Sweitzer ◽  
Tim Osswald ◽  
Naomi Chesler

Modeling pulsatile flow past heart valves remains a relatively unexplored but critical area. Due to the geometric complexity and the interaction between the flowing blood and the heart valve leaflets, existing numerical techniques that require domain discretization, such as finite element methods or finite difference techniques, cannot fully represent the moving and deforming boundaries present in an operating valve. Our aim is to develop a technique to model the flow through heart valves which includes the interaction between the blood flow and the valve leaflets using the radial functions method (RFM). The RFM is a meshless technique that fully accounts for moving and deforming surfaces and thus is well suited to model the blood flow and its interaction with leaflet motion. Here we present a 2D fluid structure interaction (FSI) model of the blood flow through a bileaflet mechanical heart valve (MHV).


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401982858
Author(s):  
Liaojun Zhang ◽  
Shuo Wang ◽  
Guojiang Yin ◽  
Chaonian Guan

Current studies on the operation of the axial pump mainly focus on hydraulic performances, while the coupled interaction between the fluid and structure attracts little attention. This study aims to provide numerical investigation into the vibration features in a vertical axial pump based on two-way iterative fluid–structure interaction method. Three-dimensional coupling model was established with high-quality structured grids of ADINA software. Turbulent flow features were studied under design condition, using shear–stress transport k-ω turbulence model and sliding mesh approach. Typical measure points along and perpendicular to flow direction in fluid domain were selected to analyze pressure pulsation features of the impeller and fixed guide vane. By contrast, vibration features of equivalent stress in corresponding structural positions were investigated and compared based on fluid–structure interaction method. In order to explore fluid–structure interaction vibration mechanism, distribution of main frequencies and amplitudes of the measure points was presented based on the Fast Fourier Transformation method. The results reveal the time and frequency law of fluid pressure pulsation and structural vibration at the same position in the vertical axial pump while additionally provide important theoretical guidance for optimization design and safe operation of the vertical axial pump.


2016 ◽  
Vol 33 (8) ◽  
pp. 2504-2529 ◽  
Author(s):  
Babak Lotfi ◽  
Bengt Sunden ◽  
Qiu-Wang Wang

Purpose The purpose of this paper is to investigate the numerical fluid-structure interaction (FSI) framework for the simulations of mechanical behavior of new vortex generators (VGs) in smooth wavy fin-and-elliptical tube (SWFET) heat exchanger using the ANSYS MFX Multi-field® solver. Design/methodology/approach A three-dimensional FSI approach is proposed in this paper to provide better understanding of the performance of the VG structures in SWFET heat exchangers associated with the alloy material properties and geometric factors. The Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are applied for modeling of the turbulent flow in SWFET heat exchanger and the linear elastic Cauchy-Navier model is solved for the structural von Mises stress and elastic strain analysis in the VGs region. Findings Parametric studies conducted in the course of this research successfully identified illustrate that the maximum magnitude of von Mises stress and elastic strain occurs at the root of the VGs and depends on geometrical parameters and material types. These results reveal that the titanium alloy VGs shows a slightly higher strength and lower elastic strain compared to the aluminum alloy VGs. Originality/value This paper is one of the first in the literature that provides original information mechanical behavior of a SWFET heat exchanger model with new VGs in the field of FSI coupling technique.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 119 ◽  
Author(s):  
Anvar Gilmanov ◽  
Alexander Barker ◽  
Henryk Stolarski ◽  
Fotis Sotiropoulos

When flow-induced forces are altered at the blood vessel, maladaptive remodeling can occur. One reason such remodeling may occur has to do with the abnormal functioning of the aortic heart valve due to disease, calcification, injury, or an improperly-designed prosthetic valve, which restricts the opening of the valve leaflets and drastically alters the hemodynamics in the ascending aorta. While the specifics underlying the fundamental mechanisms leading to changes in heart valve function may differ from one cause to another, one common and important change is in leaflet stiffness and/or mass. Here, we examine the link between valve stiffness and mass and the hemodynamic environment in aorta by coupling magnetic resonance imaging (MRI) with high-resolution fluid–structure interaction (FSI) computational fluid dynamics to simulate blood flow in a patient-specific model. The thoracic aorta and a native aortic valve were re-constructed in the FSI model from the MRI data and used for the simulations. The effect of valve stiffness and mass is parametrically investigated by varying the thickness (h) of the leaflets (h = 0.6, 2, 4 mm). The FSI simulations were designed to investigate systematically progressively higher levels of valve stiffness by increasing valve thickness and quantifying hemodynamic parameters known to be linked to aortopathy and valve disease. The computed results reveal dramatic differences in all hemodynamic parameters: (1) the geometric orifice area (GOA), (2) the maximum velocity V max of the jet passing through the aortic orifice area, (3) the rate of energy dissipation E ˙ diss ( t ) , (4) the total loss of energy E diss , (5) the kinetic energy of the blood flow E kin ( t ) , and (6) the average magnitude of vorticity Ω a ( t ) , illustrating the change in hemodynamics that occur due to the presence of aortic valve stenosis.


2014 ◽  
Vol 472 ◽  
pp. 125-130 ◽  
Author(s):  
Quan Yuan ◽  
Xin Ye

The object of this study is to utilize FE-SPH method to simulate the dynamic behavior of bioprosthetic heart valve during systole. Two kind of bioprosthetic heart valve numerical models are designed based on membrane theory, and they are represented by FE mesh, the blood is modelled as SPH particles. The interaction between the blood and bioprosthetic heart valve is carried out with contact algorithms. Results show that: when the valve leaflets are opening, compared with that of spherical valve, the stress and strain states of cylindrical valve are unstable, and the peak Von Mises is also higher, which high peak stress and its instability may induce the fatigue of valve. The valve opening time of columnar valve leaflets is longer than that of spherical ones, which reduces the blood ejection time. Above results indicate that spherical valve is superior to cylindrical valve. The FE-SPH method is capable of simulating the fluid structure interaction between the bioprosthetic heart valve and blood during the systole.


Author(s):  
Minyan Yin ◽  
Jun Li ◽  
Liming Song ◽  
Zhenping Feng

The aerodynamic and mechanical performance of the last stage was numerically investigated using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) solution and Finite Element Analysis (FEA) coupled with the one-way and two-way fluid-structure interaction models in this work. The part-span damping snubber and tip damping shroud of the rotor blade and aerodynamic pressure on rotor blade mechanical performance was considered in the one-way model. The two-way fluid-structure interaction model coupled with the mesh deformation technology was conducted to analyze the aerodynamic and mechanical performance of the last stage rotor blade. One-way fluid-structure interaction model numerical results show that the location of nodal maximum displacement moves from leading edge of 85% blade span to the trailing edge of 85% blade span. The position of nodal maximum Von Mises stress is still located at the first tooth upper surface near the leading edge at the blade root of pressure side. The two-way fluid-structure interaction model results show that the variation of static pressure distribution on long blade surface is mostly concentrated at upper region, absolute outflow angle of long blade between the 40% span and 95% span reduces, the location of nodal maximum displacement appears at the trailing edge of 85% blade span. Furthermore, the position of nodal maximum Von Mises stress remains the same and the value decreases compared to the oneway fluid-structure model results.


2014 ◽  
Vol 513-517 ◽  
pp. 4298-4301
Author(s):  
Xiu Quan Lu ◽  
Wei Cai ◽  
Wen Xing Ma ◽  
Yue Shi Wu ◽  
Wen Xu

In the design and manufacturing process of the hydrodynamic coupling, the fluid pressure on the impeller is difficult to calculate when analyzing the strength of the impeller. We can use the one-way fluid-structure interaction analysis. When interpolate the pressure on the flow field and structural coordinate values, choosing reasonable interpolation method can reduce the amount of computation, improve accuracy, simplify product design and manufacturing process. This article is based on one-way fluid-structure interaction analysis. We compare the four interpolation method in MATLAB, conclude that the spline interpolation is better than others. It is the most suitable for practical applications, which can simplify the design of the manufacturing process of the hydrodynamic coupling.


Sign in / Sign up

Export Citation Format

Share Document